
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Flavio Junqueira and Benjamin Reed

ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

ZooKeeper
by Flavio Junqueira and Benjamin Reed

Copyright © 2014 Flavio Junqueira and Benjamin Reed. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Andy Oram
Production Editor: Kara Ebrahim
Copyeditor: Kim Cofer
Proofreader: Rachel Head

Indexer: Judy McConville
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

November 2013: First Edition

Revision History for the First Edition:

2013-11-15: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449361303 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. ZooKeeper, the image of a European wildcat, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36130-3

[LSI]

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449361303
http://www.it-ebooks.info/

Table of Contents

Preface. ix

Part I. ZooKeeper Concepts and Basics

1. Introduction. 3
The ZooKeeper Mission 4

How the World Survived without ZooKeeper 6
What ZooKeeper Doesn’t Do 6
The Apache Project 7
Building Distributed Systems with ZooKeeper 7

Example: Master-Worker Application 9
Master Failures 10
Worker Failures 10
Communication Failures 11
Summary of Tasks 12

Why Is Distributed Coordination Hard? 12
ZooKeeper Is a Success, with Caveats 14

2. Getting to Grips with ZooKeeper. 17
ZooKeeper Basics 17

API Overview 18
Different Modes for Znodes 19
Watches and Notifications 20
Versions 23

ZooKeeper Architecture 23
ZooKeeper Quorums 24
Sessions 25

Getting Started with ZooKeeper 26
First ZooKeeper Session 27

iii

www.it-ebooks.info

http://www.it-ebooks.info/

States and the Lifetime of a Session 30
ZooKeeper with Quorums 31
Implementing a Primitive: Locks with ZooKeeper 35

Implementation of a Master-Worker Example 35
The Master Role 36
Workers, Tasks, and Assignments 38
The Worker Role 39
The Client Role 40

Takeaway Messages 42

Part II. Programming with ZooKeeper

3. Getting Started with the ZooKeeper API. 45
Setting the ZooKeeper CLASSPATH 45
Creating a ZooKeeper Session 45

Implementing a Watcher 47
Running the Watcher Example 49

Getting Mastership 51
Getting Mastership Asynchronously 56
Setting Up Metadata 59

Registering Workers 60
Queuing Tasks 64
The Admin Client 65
Takeaway Messages 68

4. Dealing with State Change. 69
One-Time Triggers 70

Wait, Can I Miss Events with One-Time Triggers? 70
Getting More Concrete: How to Set Watches 71
A Common Pattern 72
The Master-Worker Example 73

Mastership Changes 73
Master Waits for Changes to the List of Workers 77
Master Waits for New Tasks to Assign 79
Worker Waits for New Task Assignments 82
Client Waits for Task Execution Result 85

An Alternative Way: Multiop 87
Watches as a Replacement for Explicit Cache Management 90
Ordering Guarantees 91

Order of Writes 91
Order of Reads 91

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Order of Notifications 92
The Herd Effect and the Scalability of Watches 93
Takeaway Messages 94

5. Dealing with Failure. 97
Recoverable Failures 99

The Exists Watch and the Disconnected Event 102
Unrecoverable Failures 103
Leader Election and External Resources 104
Takeaway Messages 108

6. ZooKeeper Caveat Emptor. 109
Using ACLs 109

Built-in Authentication Schemes 110
SASL and Kerberos 113
Adding New Schemes 113

Session Recovery 113
Version Is Reset When Znode Is Re-Created 114
The sync Call 114
Ordering Guarantees 116

Order in the Presence of Connection Loss 116
Order with the Synchronous API and Multiple Threads 117
Order When Mixing Synchronous and Asynchronous Calls 118

Data and Child Limits 118
Embedding the ZooKeeper Server 118
Takeaway Messages 119

7. The C Client. 121
Setting Up the Development Environment 121
Starting a Session 122
Bootstrapping the Master 124
Taking Leadership 130
Assigning Tasks 132
Single-Threaded versus Multithreaded Clients 136
Takeaway Messages 138

8. Curator: A High-Level API for ZooKeeper. 139
The Curator Client 139
Fluent API 140
Listeners 141
State Changes in Curator 143
A Couple of Edge Cases 144

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

Recipes 144
Leader Latch 144
Leader Selector 146
Children Cache 149

Takeaway Messages 151

Part III. Administering ZooKeeper

9. ZooKeeper Internals. 155
Requests, Transactions, and Identifiers 156
Leader Elections 157
Zab: Broadcasting State Updates 161
Observers 166
The Skeleton of a Server 167

Standalone Servers 167
Leader Servers 168
Follower and Observer Servers 169

Local Storage 170
Logs and Disk Use 170
Snapshots 172

Servers and Sessions 173
Servers and Watches 174
Clients 175
Serialization 175
Takeaway Messages 176

10. Running ZooKeeper. 177
Configuring a ZooKeeper Server 178

Basic Configuration 179
Storage Configuration 179
Network Configuration 181
Cluster Configuration 183
Authentication and Authorization Options 186
Unsafe Options 186
Logging 188
Dedicating Resources 189

Configuring a ZooKeeper Ensemble 190
The Majority Rules 190
Configurable Quorums 191
Observers 193

Reconfiguration 193

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Client Connect Strings 197
Quotas 200
Multitenancy 201
File System Layout and Formats 202

Transaction Logs 202
Snapshots 203
Epoch Files 204
Using Stored ZooKeeper Data 205

Four-Letter Words 205
Monitoring with JMX 207

Connecting Remotely 213
Tools 214
Takeaway Messages 214

Index. 215

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Building distributed systems is hard. A lot of the applications people use daily, however,
depend on such systems, and it doesn’t look like we will stop relying on distributed
computer systems any time soon. Apache ZooKeeper has been designed to mitigate the
task of building robust distributed systems. It has been built around core distributed
computing concepts, with its main goal to present the developer with an interface that
is simple to understand and program against, thus simplifying the task of building such
systems.

Even with ZooKeeper, the task is not trivial—which leads us to this book. This book will
get you up to speed on building distributed systems with Apache ZooKeeper. We start
with basic concepts that will quickly make you feel like you’re a distributed systems
expert. Perhaps it will be a bit disappointing to see that it is not that simple when we
discuss a bunch of caveats that you need to be aware of. But don’t worry; if you under‐
stand well the key issues we expose, you’ll be on the right track to building great dis‐
tributed applications.

Audience
This book is aimed at developers of distributed systems and administrators of applica‐
tions using ZooKeeper in production. We assume knowledge of Java, and try to give
you enough background in the principles of distributed systems to use ZooKeeper
robustly.

Contents of This Book
Part I covers some motivations for a system like Apache ZooKeeper, and some of the
necessary background in distributed systems that you need to use it.

• Chapter 1, Introduction, explains what ZooKeeper can accomplish and how its de‐
sign supports its mission.

ix

www.it-ebooks.info

http://www.it-ebooks.info/

• Chapter 2, Getting to Grips with ZooKeeper, goes over the basic concepts and build‐
ing blocks. It explains how to get a more concrete idea of what ZooKeeper can do
by using the command line.

Part II covers the library calls and programming techniques that programmers need to
know. It is useful but not required reading for system administrators. This part focuses
on the Java API because it is the most popular. If you are using a different language, you
can read this part to learn the basic techniques and functions, then implement them in
a different language. We have an additional chapter covering the C binding for the
developers of applications in this language.

• Chapter 3, Getting Started with the ZooKeeper API, introduces the Java API.
• Chapter 4, Dealing with State Change, explains how to track and react to changes

to the state of ZooKeeper.
• Chapter 5, Dealing with Failure, shows how to recover from system or network

problems.
• Chapter 6, ZooKeeper Caveat Emptor, describes some miscellaneous but important

considerations you should look for to avoid problems.
• Chapter 7, The C Client, introduces the C API, which is the basis for all the non-

Java implementations of the ZooKeeper API. Therefore, it’s valuable for program‐
mers using any language besides Java.

• Chapter 8, Curator: A High-Level API for ZooKeeper, describes a popular high-level
interfaces to ZooKeeper.

Part III covers ZooKeeper for system administrators. Programmers might also find it
useful, in particular the chapter about internals.

• Chapter 9, ZooKeeper Internals, describes some of the choices made by ZooKeeper
developers that have an impact on administration tasks.

• Chapter 10, Running ZooKeeper, shows how to configure ZooKeeper.

Conventions Used in this Book
The following typographical conventions are used in this book:
Italic

Used for emphasis, new terms, URLs, commands and utilities, and file and directory
names.

x | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Constant width

Indicates variables, functions, types, parameters, objects, and other programming
constructs.

Constant width bold

Shows commands or other text that should be typed literally by the user. Also used
for emphasis in command output.

Constant width italic

Indicates placeholders in code or commands that should be replaced by appropriate
values.

This icon signifies a tip, suggestion, or a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://bit.ly/zookeeper-code.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “ZooKeeper by Flavio Junqueira and Benja‐
min Reed (O’Reilly). Copyright 2014 Flavio Junqueira and Benjamin Reed,
978-1-449-36130-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s lead‐
ing authors in technology and business.

Preface | xi

www.it-ebooks.info

http://bit.ly/zookeeper-code
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.it-ebooks.info/

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/zookeeper-orm.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank our editors, initially Nathan Jepson and later Andy Oram, for
the fantastic job they did of getting us to produce this book.

xii | Preface

www.it-ebooks.info

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/zookeeper-orm
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

We would like to thank our families and employers for understanding the importance
of spending so many hours with this book. We hope you appreciate the outcome.

We would like to thank our reviewers for spending time to give us great comments that
helped us to improve the material in this book. They are: Patrick Hunt, Jordan Zim‐
merman, Donald Miner, Henry Robinson, Isabel Drost-Fromm, and Thawan Kooburat.

ZooKeeper is the collective work of the Apache ZooKeeper community. We work with
some really excellent committers and other contributors; it’s a privilege to work with
you all. We also want to give a big thanks to all of the ZooKeeper users who have reported
bugs and given us so much feedback and encouragement over the years.

Preface | xiii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PART I

ZooKeeper Concepts and Basics

This part of the book should be read by anyone interested in ZooKeeper. It explains the
problems that ZooKeeper solves and the trade-offs made during its design.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introduction

In the past, each application was a single program running on a single computer with
a single CPU. Today, things have changed. In the Big Data and Cloud Computing world,
applications are made up of many independent programs running on an ever-changing
set of computers.

Coordinating the actions of these independent programs is far more difficult than writ‐
ing a single program to run on a single computer. It is easy for developers to get mired
in coordination logic and lack the time to write their application logic properly—or
perhaps the converse, to spend little time with the coordination logic and simply to write
a quick-and-dirty master coordinator that is fragile and becomes an unreliable single
point of failure.

ZooKeeper was designed to be a robust service that enables application developers to
focus mainly on their application logic rather than coordination. It exposes a simple
API, inspired by the filesystem API, that allows developers to implement common co‐
ordination tasks, such as electing a master server, managing group membership, and
managing metadata. ZooKeeper is an application library with two principal implemen‐
tations of the APIs—Java and C—and a service component implemented in Java that
runs on an ensemble of dedicated servers. Having an ensemble of servers enables Zoo‐
Keeper to tolerate faults and scale throughput.

When designing an application with ZooKeeper, one ideally separates application data
from control or coordination data. For example, the users of a web-mail service are
interested in their mailbox content, but not on which server is handling the requests of
a particular mailbox. The mailbox content is application data, whereas the mapping of
the mailbox to a specific mail server is part of the coordination data (or metadata). A
ZooKeeper ensemble manages the latter.

3

www.it-ebooks.info

http://www.it-ebooks.info/

The ZooKeeper Mission
Trying to explain what ZooKeeper does for us is like trying to explain what a screwdriver
can do for us. In very basic terms, a screwdriver allows us to turn or drive screws, but
putting it this way does not really express the power of the tool. It enables us to assemble
pieces of furniture and electronic devices, and in some cases hang pictures on the wall.
By giving some examples like this, we can give a sense of what can be done, but it is
certainly not exhaustive.

The argument for what a system like ZooKeeper can do for us is along the same lines:
it enables coordination tasks for distributed systems. A coordination task is a task in‐
volving multiple processes. Such a task can be for the purposes of cooperation or to
regulate contention. Cooperation means that processes need to do something together,
and processes take action to enable other processes to make progress. For example, in
typical master-worker architectures, the worker informs the master that it is available
to do work. The master consequently assigns tasks to the worker. Contention is different:
it refers to situations in which two processes cannot make progress concurrently, so one
must wait for the other. Using the same master-worker example, we really want to have
a single master, but multiple processes may try to become the master. The multiple
processes consequently need to implement mutual exclusion. We can actually think of
the task of acquiring mastership as the one of acquiring a lock: the process that acquires
the mastership lock exercises the role of master.

If you have any experience with multithreaded programs, you will recognize that there
are a lot of similar problems. In fact, having a number of processes running in the same
computer or across computers is conceptually not different at all. Synchronization
primitives that are useful in the context of multiple threads are also useful in the context
of distributed systems. One important difference, however, stems from the fact that
different computers do not share anything other than the network in a typical shared-
nothing architecture. While there are a number of message-passing algorithms to im‐
plement synchronization primitives, it is typically much easier to rely upon a component
that provides a shared store with some special ordering properties, like ZooKeeper does.

Coordination does not always take the form of synchronization primitives like leader
election or locks. Configuration metadata is often used as a way for a process to convey
what others should be doing. For example, in a master-worker system, workers need to
know the tasks that have been assigned to them, and this information must be available
even if the master crashes.

Let’s look at some examples where ZooKeeper has been useful to get a better sense of
where it is applicable:

4 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

Apache HBase
HBase is a data store typically used alongside Hadoop. In HBase, ZooKeeper is used
to elect a cluster master, to keep track of available servers, and to keep cluster
metadata.

Apache Kafka
Kafka is a pub-sub messaging system. It uses ZooKeeper to detect crashes, to im‐
plement topic discovery, and to maintain production and consumption state for
topics.

Apache Solr
Solr is an enterprise search platform. In its distributed form, called SolrCloud, it
uses ZooKeeper to store metadata about the cluster and coordinate the updates to
this metadata.

Yahoo! Fetching Service
Part of a crawler implementation, the Fetching Service fetches web pages efficiently
by caching content while making sure that web server policies, such as those in
robots.txt files, are preserved. This service uses ZooKeeper for tasks such as master
election, crash detection, and metadata storage.

Facebook Messages
This is a Facebook application that integrates communication channels: email, SMS,
Facebook Chat, and the existing Facebook Inbox. It uses ZooKeeper as a controller
for implementing sharding and failover, and also for service discovery.

There are a lot more examples out there; this is a just a sample. Given this sample, let’s
now bring the discussion to a more abstract level. When programming with ZooKeeper,
developers design their applications as a set of clients that connect to ZooKeeper servers
and invoke operations on them through the ZooKeeper client API. Among the strengths
of the ZooKeeper API, it provides:

• Strong consistency, ordering, and durability guarantees
• The ability to implement typical synchronization primitives
• A simpler way to deal with many aspects of concurrency that often lead to incorrect

behavior in real distributed systems

ZooKeeper, however, is not magic; it will not solve all problems out of the box. It is
important to understand what ZooKeeper provides and to be aware of its tricky aspects.
One of the goals of this book is to discuss ways to deal with these issues. We cover the
basic material needed to get the reader to understand what ZooKeeper actually does for

The ZooKeeper Mission | 5

www.it-ebooks.info

http://on.fb.me/1a7uViK
http://www.it-ebooks.info/

developers. We additionally discuss several issues we have come across while imple‐
menting applications with ZooKeeper and helping developers new to ZooKeeper.

The Origin of the Name “ZooKeeper”
ZooKeeper was developed at Yahoo! Research. We had been working on ZooKeeper for
a while and pitching it to other groups, so we needed a name. At the time the group had
been working with the Hadoop team and had started a variety of projects with the names
of animals, Apache Pig being the most well known. As we were talking about different
possible names, one of the group members mentioned that we should avoid another
animal name because our manager thought it was starting to sound like we lived in a
zoo. That is when it clicked: distributed systems are a zoo. They are chaotic and hard to
manage, and ZooKeeper is meant to keep them under control.

The cat on the book cover is also appropriate, because an early article from Yahoo!
Research about ZooKeeper described distributed process management as similar to
herding cats. ZooKeeper sounds much better than CatHerder, though.

How the World Survived without ZooKeeper
Has ZooKeeper enabled a whole new class of applications to be developed? That doesn’t
seem to be the case. ZooKeeper instead simplifies the development process, making it
more agile and enabling more robust implementations.

Previous systems have implemented components like distributed lock managers or have
used distributed databases for coordination. ZooKeeper, in fact, borrows a number of
concepts from these prior systems. It does not expose a lock interface or a general-
purpose interface for storing data, however. The design of ZooKeeper is specialized and
very focused on coordination tasks. At the same time, it does not try to impose a par‐
ticular set of synchronization primitives upon the developer, being very flexible with
respect to what can be implemented.

It is certainly possible to build distributed systems without using ZooKeeper. ZooKeep‐
er, however, offers developers the possibility of focusing more on application logic rather
than on arcane distributed systems concepts. Programming distributed systems without
ZooKeeper is possible, but more difficult.

What ZooKeeper Doesn’t Do
The ensemble of ZooKeeper servers manages critical application data related to coor‐
dination. ZooKeeper is not for bulk storage. For bulk storage of application data, there
are a number of options available, such as databases and distributed file systems. When
designing an application with ZooKeeper, one ideally separates application data from

6 | Chapter 1: Introduction

www.it-ebooks.info

http://pig.apache.org
http://www.it-ebooks.info/

control or coordination data. They often have different requirements; for example, with
respect to consistency and durability.

ZooKeeper implements a core set of operations that enable the implementation of tasks
that are common to many distributed applications. How many applications do you know
that have a master or need to track which processes are responsive? ZooKeeper, however,
does not implement the tasks for you. It does not elect a master or track live processes
for the application out of the box. Instead, it provides the tools for implementing such
tasks. The developer decides what coordination tasks to implement.

The Apache Project
ZooKeeper is an open source project hosted by the Apache Software Foundation. It has
a Project Management Committee (PMC) that is responsible for management and
oversight of the project. Only committers can check in patches, but any developer can
contribute a patch. Developers can become committers after contributing to the project.
Contributions to the project are not limited to patches—they can come in other forms
and interactions with other members of the community. We have lots of discussions on
the mailing lists about new features, questions from new users, etc. We highly encourage
developers interested in participating in the community to subscribe to the mailing lists
and participate in the discussions. You may well find it also worth becoming a committer
if you want to have a long-term relationship with ZooKeeper through some project.

Building Distributed Systems with ZooKeeper
There are multiple definitions of a distributed system, but for the purposes of this book,
we define it as a system comprised of multiple software components running inde‐
pendently and concurrently across multiple physical machines. There are a number of
reasons to design a system in a distributed manner. A distributed system is capable of
exploiting the capacity of multiple processors by running components, perhaps repli‐
cated, in parallel. A system might be distributed geographically for strategic reasons,
such as the presence of servers in multiple locations participating in a single application.

Having a separate coordination component has a couple of important advantages. First,
it allows the component to be designed and implemented independently. Such an in‐
dependent component can be shared across many applications. Second, it enables a
system architect to reason more easily about the coordination aspect, which is not trivial
(as this book tries to expose). Finally, it enables a system to run and manage the coor‐
dination component separately. Running such a component separately simplifies the
task of solving issues in production.

Software components run in operating system processes, in many cases executing mul‐
tiple threads. Thus, ZooKeeper servers and clients are processes. Often, a single physical
server (whether a standalone machine or an operating system in a virtual environment)

The ZooKeeper Mission | 7

www.it-ebooks.info

http://www.it-ebooks.info/

runs a single application process, although the process might execute multiple threads
to exploit the multicore capacity of modern processors.

Processes in a distributed system have two broad options for communication: they can
exchange messages directly through a network, or read and write to some shared storage.
ZooKeeper uses the shared storage model to let applications implement coordination
and synchronization primitives. But shared storage itself requires network communi‐
cation between the processes and the storage. It is important to stress the role of network
communication because it is an important source of complications in the design of a
distributed system.

In real systems, it is important to watch out for the following issues:
Message delays

Messages can get arbitrarily delayed; for instance, due to network congestion. Such
arbitrary delays may introduce undesirable situations. For example, process P may
send a message before another process Q sends its message, according to a reference
clock, but Q’s message might be delivered first.

Processor speed
Operating system scheduling and overload might induce arbitrary delays in mes‐
sage processing. When one process sends a message to another, the overall latency
of this message is roughly the sum of the processing time on the sender, the trans‐
mission time, and the processing time on the receiver. If the sending or receiving
process requires time to be scheduled for processing, then the message latency is
higher.

Clock drift
It is not uncommon to find systems that use some notion of time, such as when
determining the time at which events occur in the system. Processor clocks are not
reliable and can arbitrarily drift away from each other. Consequently, relying upon
processor clocks might lead to incorrect decisions.

One important consequence of these issues is that it is very hard in practice to tell if a
process has crashed or if any of these factors is introducing some arbitrary delay. Not
receiving a message from a process could mean that it has crashed, that the network is
delaying its latest message arbitrarily, that there is something delaying the process, or
that the process clock is drifting away. A system in which such a distinction can’t be
made is said to be asynchronous.

Data centers are generally built using large batches of mostly uniform hardware. But
even in data centers, we have observed the impact of all these issues on applications due
to the use of multiple generations of hardware in a single application, and subtle but
significant performance differences even within the same batch of hardware. All these
things complicate the life of a distributed systems designer.

8 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

ZooKeeper has been designed precisely to make it simpler to deal with these issues.
ZooKeeper does not make the problems disappear or render them completely trans‐
parent to applications, but it does make the problems more tractable. ZooKeeper
implements solutions to important distributed computing problems and packages up
these implementations in a way that is intuitive to developers… at least, this has been
our hope all along.

Example: Master-Worker Application
We have talked about distributed systems in the abstract, but it is now time to make it
a bit more concrete. Let’s consider a common architecture that has been used extensively
in the design of distributed systems: a master-worker architecture (Figure 1-1). One
important example of a system following this architecture is HBase, a clone of Google’s
Bigtable. At a very high level, the master server (HMaster) is responsible for keeping
track of the region servers (HRegionServer) available and assigning regions to servers.
Because we don’t cover it here, we encourage you to check the HBase documentation
for further details on how it uses ZooKeeper. Our discussion instead focuses on a generic
master-worker architecture.

Figure 1-1. Master-worker example

In general, in such an architecture a master process is responsible for keeping track of
the workers and tasks available, and for assigning tasks to workers. For ZooKeeper, this
architecture style is representative because it illustrates a number of popular tasks, like
electing a master, keeping track of available workers, and maintaining application
metadata.

To implement a master-worker system, we must solve three key problems:
Master crashes

If the master is faulty and becomes unavailable, the system cannot allocate new
tasks or reallocate tasks from workers that have also failed.

Worker crashes
If a worker crashes, the tasks assigned to it will not be completed.

Example: Master-Worker Application | 9

www.it-ebooks.info

http://hbase.apache.org
http://www.it-ebooks.info/

Communication failures
If the master and a worker cannot exchange messages, the worker might not learn
of new tasks assigned to it.

To deal with these problems, the system must be able to reliably elect a new master if
the previous one is faulty, determine which workers are available, and decide when the
state of a worker is stale with respect to the rest of the system. We’ll look at each task
briefly in the following sections.

Master Failures
To mask master crashes, we need to have a backup master. When the primary master
crashes, the backup master takes over the role of primary master. Failing over, however,
is not as simple as starting to process requests that come in to the master. The new
primary master must be able to recover the state of the system at the time the old primary
master crashed. For recoverability of the master state, we can’t rely on pulling it from
the faulty master because it has crashed; we need to have it somewhere else. This some‐
where else is ZooKeeper.

Recovering the state is not the only important issue. Suppose that the primary master
is up, but the backup master suspects that the primary master has crashed. This false
suspicion could happen because, for example, the primary master is heavily loaded and
its messages are being delayed arbitrarily (see the discussion in “Building Distributed
Systems with ZooKeeper” on page 7). The backup master will execute all necessary
procedures to take over the role of primary master and may eventually start executing
the role of primary master, becoming a second primary master. Even worse, if some
workers can’t communicate with the primary master, say because of a network partition,
they may end up following the second primary master. This scenario leads to a problem
commonly called split-brain: two or more parts of the system make progress independ‐
ently, leading to inconsistent behavior. As part of coming up with a way to cope with
master failures, it is critical that we avoid split-brain scenarios.

Worker Failures
Clients submit tasks to the master, which assigns the tasks to available workers. The
workers receive assigned tasks and report the status of the execution once these tasks
have been executed. The master next informs the clients of the results of the execution.

If a worker crashes, all tasks that were assigned to it and not completed must be reas‐
signed. The first requirement here is to give the master the ability to detect worker
crashes. The master must be able to detect when a worker crashes and must be able to
determine what other workers are available to execute its tasks. In the case a worker
crashes, it may end up partially executing tasks or even fully executing tasks but not

10 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

reporting the results. If the computation has side effects, some recovery procedure might
be necessary to clean up the state.

Communication Failures
If a worker becomes disconnected from the master, say due to a network partition,
reassigning a task could lead to two workers executing the same task. If executing a task
more than once is acceptable, we can reassign without verifying whether the first worker
has executed the task. If it is not acceptable, then the application must be able to ac‐
commodate the possibility that multiple workers may end up trying to execute the task.

Exactly-Once and At-Most-Once Semantics
Using locks for tasks (as with the case of master election) is not sufficient to avoid having
tasks executed multiple times because we can have, for example, the following succession
of events:

1. Master M1 assigns Task T1 to Worker W1.
2. W1 acquires the lock for T1, executes it, and releases the lock.
3. Master M1 suspects that W1 has crashed and reassigns Task T1 to worker W2.
4. W2 acquires the lock for T1, executes it, and releases the lock.

Here, the lock over T1 did not prevent the task from being executed twice because the
two workers did not interleave their steps when executing the task. To deal with cases
in which exactly-once or at-most-once semantics are required, an application relies on
mechanisms that are specific to its nature. For example, if application data has time‐
stamps and a task is supposed to modify application data, then a successful execution
of the task could be conditional on the timestamp values of the data it touches. The
application also needs the ability to roll back partial changes in the case that the appli‐
cation state is not modified atomically; otherwise, it might end up with an inconsistent
state.

The bottom line is that we are having this discussion just to illustrate the difficulties
with implementing these kinds of semantics for applications. It is not within the scope
of this book to discuss in detail the implementation of such semantics.

Another important issue with communication failures is the impact they have on syn‐
chronization primitives like locks. Because nodes can crash and systems are prone to
network partitions, locks can be problematic: if a node crashes or gets partitioned away,
the lock can prevent others from making progress. ZooKeeper consequently needs to
implement mechanisms to deal with such scenarios. First, it enables clients to say that
some data in the ZooKeeper state is ephemeral. Second, the ZooKeeper ensemble

Example: Master-Worker Application | 11

www.it-ebooks.info

http://www.it-ebooks.info/

requires that clients periodically notify that they are alive. If a client fails to notify the
ensemble in a timely manner, then all ephemeral state belonging to this client is deleted.
Using these two mechanisms, we are able to prevent clients individually from bringing
the application to a halt in the presence of crashes and communication failures.

Recall that we argued that in systems in which we cannot control the delay of messages
it is not possible to tell if a client has crashed or if it is just slow. Consequently, when we
suspect that a client has crashed, we actually need to react by assuming that it could just
be slow, and that it may execute some other actions in the future.

Summary of Tasks
From the preceding descriptions, we can extract the following requirements for our
master-worker architecture:
Master election

It is critical for progress to have a master available to assign tasks to workers.

Crash detection
The master must be able to detect when workers crash or disconnect.

Group membership management
The master must be able to figure out which workers are available to execute tasks.

Metadata management
The master and the workers must be able to store assignments and execution sta‐
tuses in a reliable manner.

Ideally, each of these tasks is exposed to the application in the form of a primitive, hiding
completely the implementation details from the application developer. ZooKeeper pro‐
vides key mechanisms to implement such primitives so that developers can implement
the ones that best suit their needs and focus on the application logic. Throughout this
book, we often refer to implementations of tasks like master election or crash detection
as primitives because these are concrete tasks that distributed applications build upon.

Why Is Distributed Coordination Hard?
Some of the complications of writing distributed applications are immediately apparent.
For example, when our application starts up, somehow all of the different processes
need to find the application configuration. Over time this configuration may change.
We could shut everything down, redistribute configuration files, and restart, but that
may incur extended periods of application downtime during reconfiguration.

Related to the configuration problem is the problem of group membership. As the load
changes, we want to be able to add or remove new machines and processes.

12 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

The problems just described are functional problems that you can design solutions for
as you implement your distributed application; you can test your solutions before de‐
ployment and be pretty sure that you have solved the problems correctly. The truly
difficult problems you will encounter as you develop distributed applications have to
do with faults—specifically, crashes and communication faults. These failures can crop
up at any point, and it may be impossible to enumerate all the different corner cases that
need to be handled.

Byzantine Faults
Byzantine faults are faults that may cause a component to behave in
some arbitrary (and often unanticipated) way. Such a faulty compo‐
nent might, for example, corrupt application state or even behave ma‐
liciously. Systems that are built under the assumption that these faults
can occur require a higher degree of replication and the use of secu‐
rity primitives. Although we acknowledge that there have been signif‐
icant advances in the development of techniques to tolerate Byzan‐
tine faults in the academic literature, we haven’t felt the need to adopt
such techniques in ZooKeeper, and consequently we have avoided the
additional complexity in the code base.

Failures also highlight a big difference between applications that run on a single machine
and distributed applications: in distributed apps, partial failures can take place. When
a single machine crashes, all the processes running on that machine fail. If there are
multiple processes running on the machine and a process fails, the other processes can
find out about the failure from the operating system. The operating system can also
provide strong messaging guarantees between processes. All of this changes in a dis‐
tributed environment: if a machine or process fails, other machines will keep running
and may need to take over for the faulty processes. To handle faulty processes, the
processes that are still running must be able to detect the failure; messages may be lost,
and there may even be clock drift.

Ideally, we design our systems under the assumption that communication is asynchro‐
nous: the machines we use may experience clock drift and may experience communi‐
cation failures. We make this assumption because these things do happen. Clocks drift
all the time, we have all experienced occasional network problems, and unfortunately,
failures also happen. What kinds of limits does this put on what we can do?

Well, let’s take the simplest case. Let’s assume that we have a distributed configuration
that has been changing. This configuration is as simple as it can be: one bit. The processes
in our application can start up once all running processes have agreed on the value of
the configuration bit.

Why Is Distributed Coordination Hard? | 13

www.it-ebooks.info

http://www.it-ebooks.info/

1. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impossibility of Distributed Consensus with
One Faulty Process.” Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, (1983), doi:10.1145/588058.588060.

2. Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-
Tolerant Web Services.” ACM SIGACT News, 33:2 (2002), doi:10.1145/564585.564601.

3. Leslie Lamport. “The Part-Time Parliament.” ACM Transactions on Computer Systems, 16:2 (1998): 133–169.

4. K. Birman and T. Joseph. “Exploiting Virtual Synchrony in Distributed Systems.” Proceedings of the 11th ACM
Symposium on Operating Systems Principles, (1987): 123–138.

It turns out that a famous result in distributed computing, known as FLP after the
authors Fischer, Lynch, and Patterson, proved that in a distributed system with asyn‐
chronous communication and process crashes, processes may not always agree on the
one bit of configuration.1 A similar result known as CAP, which stands for Consistency,
Availability, and Partition-tolerance, says that when designing a distributed system we
may want all three of those properties, but that no system can handle all three.2 Zoo‐
Keeper has been designed with mostly consistency and availability in mind, although
it also provides read-only capability in the presence of network partitions.

Okay, so we cannot have an ideal fault-tolerant, distributed, real-world system that
transparently takes care of all problems that might ever occur. We can strive for a slightly
less ambitious goal, though. First, we have to relax some of our assumptions and/or our
goals. For example, we may assume that the clock is synchronized within some bounds;
we may choose to be always consistent and sacrifice the ability to tolerate some network
partitions; there may be times when a process may be running, but must act as if it is
faulty because it cannot be sure of the state of the system. While these are compromises,
they are compromises that have allowed us to build some rather impressive distributed
systems.

ZooKeeper Is a Success, with Caveats
Having pointed out that the perfect solution is impossible, we can repeat that ZooKeeper
is not going to solve all the problems that the distributed application developer has to
face. It does give the developer a nice framework to deal with these problems, though.
There has been a lot of work over the years in distributed computing that ZooKeeper
builds upon. Paxos3 and virtual synchrony4 have been particularly influential in the
design of ZooKeeper. It deals with the changes and situations as they arise as seamlessly
as possible, and gives developers a framework to deal with situations that arise that just
cannot be handled automatically.

ZooKeeper was originally developed at Yahoo!, home to an abundance of large dis‐
tributed applications. We noticed that the distributed coordination aspects of some
applications were not treated appropriately, so systems were deployed with single points
of failure or were brittle. On the other hand, other developers would spend so much

14 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

time on the distributed coordination that they wouldn’t have enough resources to focus
on the application functionality. We also noticed that these applications all had some
basic coordination requirements in common, so we set out to devise a general solution
that contained some key elements that we could implement once and use in many dif‐
ferent applications. ZooKeeper has proven to be far more general and popular than we
had ever thought possible.

Over the years we have found that people can easily deploy a ZooKeeper cluster and
develop applications for it—so easily, in fact, that some developers use it without com‐
pletely understanding some of the cases that require the developer to make decisions
that ZooKeeper cannot make by itself. One of the purposes of writing this book is to
make sure that developers understand what they need to do to use ZooKeeper effectively
and why they need to do it that way.

ZooKeeper Is a Success, with Caveats | 15

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Getting to Grips with ZooKeeper

The previous chapter discussed the requirements of distributed applications at a high
level and argued that they often have common requirements for coordination. We used
the master-worker example, which is representative of a broad class of practical appli‐
cations, to extract a few of the commonly used primitives we described there. We are
now ready to present ZooKeeper, a service that enables the implementation of such
primitives for coordination.

ZooKeeper Basics
Several primitives used for coordination are commonly shared across many applica‐
tions. Consequently, one way of designing a service used for coordination is to come
up with a list of primitives, expose calls to create instances of each primitive, and ma‐
nipulate these instances directly. For example, we could say that distributed locks con‐
stitute an important primitive and expose calls to create, acquire, and release locks.

Such a design, however, suffers from a couple of important shortcomings. First, we need
to either come up with an exhaustive list of primitives used beforehand, or keep ex‐
tending the API to introduce new primitives. Second, it does not give flexibility to the
application using the service to implement primitives in the way that is most suitable
for it.

We consequently have taken a different path with ZooKeeper. ZooKeeper does not ex‐
pose primitives directly. Instead, it exposes a file system-like API comprised of a small
set of calls that enables applications to implement their own primitives. We typically
use recipes to denote these implementations of primitives. Recipes include ZooKeeper
operations that manipulate small data nodes, called znodes, that are organized hier‐
archically as a tree, just like in a file system. Figure 2-1 illustrates a znode tree. The root
node contains four more nodes, and three of those nodes have nodes under them. The
leaf nodes are the data.

17

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-1. ZooKeeper data tree example

The absence of data often conveys important information about a znode. In a master-
worker example, for instance, the absence of a master znode means that no master is
currently elected. Figure 2-1 includes a few other znodes that could be useful in a master-
worker configuration:

• The /workers znode is the parent znode to all znodes representing a worker avail‐
able in the system. Figure 2-1 shows that one worker (foo.com:2181) is available.
If a worker becomes unavailable, its znode should be removed from /workers.

• The /tasks znode is the parent of all tasks created and waiting for workers to
execute them. Clients of the master-worker application add new znodes as children
of /tasks to represent new tasks and wait for znodes representing the status of the
task.

• The /assign znode is the parent of all znodes representing an assignment of a task
to a worker. When a master assigns a task to a worker, it adds a child znode
to /assign.

API Overview
Znodes may or may not contain data. If a znode contains any data, the data is stored as
a byte array. The exact format of the byte array is specific to each application, and
ZooKeeper does not directly provide support to parse it. Serialization packages such as
Protocol Buffers, Thrift, Avro, and MessagePack may be handy for dealing with the

18 | Chapter 2: Getting to Grips with ZooKeeper

www.it-ebooks.info

http://code.google.com/p/protobuf/
http://thrift.apache.org
http://avro.apache.org
http://msgpack.org
http://www.it-ebooks.info/

format of the data stored in znodes, but sometimes string encodings such as UTF-8 or
ASCII suffice.

The ZooKeeper API exposes the following operations:
create /path data

Creates a znode named with /path and containing data

delete /path

Deletes the znode /path

exists /path

Checks whether /path exists

setData /path data

Sets the data of znode /path to data

getData /path

Returns the data in /path

getChildren /path

Returns the list of children under /path

One important note is that ZooKeeper does not allow partial writes or reads of the znode
data. When setting the data of a znode or reading it, the content of the znode is replaced
or read entirely.

ZooKeeper clients connect to a ZooKeeper service and establish a session through which
they make API calls. If you are really anxious to use ZooKeeper, skip to “Sessions” on
page 25. That section explains how to run some ZooKeeper commands from a command
shell.

Different Modes for Znodes
When creating a new znode, you also need to specify a mode. The different modes
determine how the znode behaves.

Persistent and ephemeral znodes

A znode can be either persistent or ephemeral. A persistent znode /path can be deleted
only through a call to delete. An ephemeral znode, in contrast, is deleted if the client
that created it crashes or simply closes its connection to ZooKeeper.

Persistent znodes are useful when the znode stores some data on behalf of an application
and this data needs to be preserved even after its creator is no longer part of the system.
For example, in the master-worker example, we need to maintain the assignment of
tasks to workers even when the master that performed the assignment crashes.

ZooKeeper Basics | 19

www.it-ebooks.info

http://www.it-ebooks.info/

Ephemeral znodes convey information about some aspect of the application that must
exist only while the session of its creator is valid. For example, the master znode in our
master-worker example is ephemeral. Its presence implies that there is a master and the
master is up and running. If the master znode remains while the master is gone, then
the system won’t be able to detect the master crash. This would prevent the system from
making progress, so the znode must go with the master. We also use ephemeral znodes
for workers. If a worker becomes unavailable, its session expires and its znode
in /workers disappears automatically.

An ephemeral znode can be deleted in two situations:

1. When the session of the client creator ends, either by expiration or because it ex‐
plicitly closed.

2. When a client, not necessarily the creator, deletes it.

Because ephemeral znodes are deleted when their creator’s session expires, we currently
do not allow ephemerals to have children. There have been discussions in the commu‐
nity about allowing children for ephemeral znodes by making them also ephemeral.
This feature might be available in future releases, but it isn’t available currently.

Sequential znodes
A znode can also be set to be sequential. A sequential znode is assigned a unique, mo‐
notonically increasing integer. This sequence number is appended to the path used to
create the znode. For example, if a client creates a sequential znode with the path /tasks/
task-, ZooKeeper assigns a sequence number, say 1, and appends it to the path. The
path of the znode becomes /tasks/task-1. Sequential znodes provide an easy way to
create znodes with unique names. They also provide a way to easily see the creation
order of znodes.

To summarize, there are four options for the mode of a znode: persistent, ephemeral,
persistent_sequential, and ephemeral_sequential.

Watches and Notifications
Because ZooKeeper is typically accessed as a remote service, accessing a znode every
time a client needs to know its content would be very expensive: it would induce higher
latency and more operations to a ZooKeeper installation. Consider the example in
Figure 2-2. The second call to getChildren /tasks returns the same value, an empty
set, and consequently is unnecessary.

20 | Chapter 2: Getting to Grips with ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-2. Multiple reads to the same znode

This is a common problem with polling. To replace the client polling, we have opted for
a mechanism based on notifications: clients register with ZooKeeper to receive notifi‐
cations of changes to znodes. Registering to receive a notification for a given znode
consists of setting a watch. A watch is a one-shot operation, which means that it triggers
one notification. To receive multiple notifications over time, the client must set a new
watch upon receiving each notification. In the situation illustrated in Figure 2-3, the
client reads new values from ZooKeeper only when it receives a notification indicating
that the value of /tasks has changed.

Figure 2-3. Using notifications to be informed of changes to a znode

When using notifications, there are a few things to be aware of. Because notifications
are one-shot operations, it is possible that new changes will occur to a znode between

ZooKeeper Basics | 21

www.it-ebooks.info

http://www.it-ebooks.info/

a client receiving a notification for the znode and setting a new watch (but don’t worry,
you won’t miss changes to the state). Let’s look at a quick example to see how it works.
Suppose the following events happen in this order:

1. Client c1 sets a watch for changes to the data of /tasks.

2. Client c2 comes and adds a task to /tasks.
3. Client c1 receives the notification.
4. Client c1 sets a new watch, but before it does it, a third client, c3, comes and adds a

new task to /tasks.

Client c1 eventually has this new watch set, but no notification is triggered by the change
made by c3. To observe this change, c1 has to actually read the state of /tasks, which it
does when setting the watch because we set watches with operations that read the state
of ZooKeeper. Consequently, c1 does not miss any changes.

One important guarantee of notifications is that they are delivered to a client before any
other change is made to the same znode. If a client sets a watch to a znode and there are
two consecutive updates to the znode, the client receives the notification after the first
update and before it has a chance to observe the second update by, say, reading the znode
data. The key property we satisfy is the one that notifications preserve the order of
updates the client observes. Although changes to the state of ZooKeeper may end up
propagating more slowly to any given client, we guarantee that clients observe changes
to the ZooKeeper state according to a global order.

ZooKeeper produces different types of notifications, depending on how the watch cor‐
responding to the notification was set. A client can set a watch for changes to the data
of a znode, changes to the children of a znode, or a znode being created or deleted. To
set a watch, we can use any of the calls in the API that read the state of ZooKeeper. These
API calls give the option of passing a Watcher object or using the default watcher. In
our discussion of the master-worker example later in this chapter (“Implementation of
a Master-Worker Example” on page 35) and in Chapter 4, we will cover how to use this
mechanism in more detail.

Who Manages My Cache?
Instead of having the client manage its own cache of ZooKeeper val‐
ues, we could have had ZooKeeper manage such a cache on behalf of
the application. However, this would have made the design of Zoo‐
Keeper more complex. In fact, if ZooKeeper had to manage cache
invalidations, it could cause ZooKeeper operations to stall while wait‐
ing for a client to acknowledge a cache invalidation request, because
write operations would need a confirmation that all cached values had
been invalidated.

22 | Chapter 2: Getting to Grips with ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

Versions
Each znode has a version number associated with it that is incremented every time its
data changes. A couple of operations in the API can be executed conditionally: setDa
ta and delete. Both calls take a version as an input parameter, and the operation suc‐
ceeds only if the version passed by the client matches the current version on the server.
The use of versions is important when multiple ZooKeeper clients might be trying to
perform operations over the same znode. For example, suppose that a client c1 writes a
znode /config containing some configuration. If another client c2 concurrently updates
the znode, the version c1 has is stale and the setData of c1 must not succeed. Using
versions avoids such situations. In this case, the version that c1 uses when writing back
doesn’t match and the operation fails. This situation is illustrated in Figure 2-4.

Figure 2-4. Using versions to prevent inconsistencies due to concurrent updates

ZooKeeper Architecture
Now that we have discussed at a high level the operations that ZooKeeper exposes to
applications, we need to understand more of how the service actually works. Applica‐
tions make calls to ZooKeeper through a client library. The client library is responsible
for the interaction with ZooKeeper servers.

Figure 2-5 shows the relationship between clients and servers. Each client imports the
client library, and then can communicate with any ZooKeeper node.

ZooKeeper Architecture | 23

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-5. ZooKeeper architecture overview

ZooKeeper servers run in two modes: standalone and quorum. Standalone mode is
pretty much what the term says: there is a single server, and ZooKeeper state is not
replicated. In quorum mode, a group of ZooKeeper servers, which we call a ZooKeeper
ensemble, replicates the state, and together they serve client requests. From this point
on, we use the term “ZooKeeper ensemble” to denote an installation of servers. This
installation could contain a single server and operate in standalone mode or contain a
group of servers and operate in quorum mode.

ZooKeeper Quorums
In quorum mode, ZooKeeper replicates its data tree across all servers in the ensemble.
But if a client had to wait for every server to store its data before continuing, the delays
might be unacceptable. In public administration, a quorum is the minimum number of
legislators required to be present for a vote. In ZooKeeper, it is the minimum number
of servers that have to be running and available in order for ZooKeeper to work. This
number is also the minimum number of servers that have to store a client’s data before
telling the client it is safely stored. For instance, we might have five ZooKeeper servers
in total, but a quorum of three. So long as any three servers have stored the data, the
client can continue, and the other two servers will eventually catch up and store the
data.

It is important to choose an adequate size for the quorum. Quorums must guarantee
that, regardless of delays and crashes in the system, any update request the service pos‐
itively acknowledges will persist until another request supersedes it.

24 | Chapter 2: Getting to Grips with ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

To understand what this means, let’s look at an example that shows how things can go
wrong if the quorum is too small. Say we have five servers and a quorum can be any set
of two servers. Now say that servers s1 and s2 acknowledge that they have replicated a
request to create a znode /z. The service returns to the client saying that the znode has
been created. Now suppose servers s1 and s2 are partitioned away from the other servers
and from clients for an arbitrarily long time, before they have a chance to replicate the
new znode to the other servers. The service in this state is able to make progress because
there are three servers available and it really needs only two according to our assump‐
tions, but these three servers have never seen the new znode /z. Consequently, the
request to create /z is not durable.

This is an example of the split-brain scenario mentioned in Chapter 1. To avoid this
problem, in this example the size of the quorum must be at least three, which is a majority
out of the five servers in the ensemble. To make progress, the ensemble needs at least
three servers available. To confirm that a request to update the state has completed
successfully, this ensemble also requires that at least three servers acknowledge that they
have replicated it. Consequently, if the ensemble is able to make progress, then for every
update that has completed successfully, we have at least one server available that contains
a copy of that update (that is, the possible quorums intersect in at least one node).

Using such a majority scheme, we are able to tolerate the crash of f servers, where f is
less than half of the servers in the ensemble. For example, if we have five servers, we can
tolerate up to f = 2 crashes. The number of servers in the ensemble is not mandatorily
odd, but an even number actually makes the system more fragile. Say that we use four
servers for an ensemble. A majority of servers is comprised of three servers. However,
this system will only tolerate a single crash, because a double crash makes the system
lose majority. Consequently, with four servers, we can only tolerate a single crash, but
quorums now are larger, which implies that we need more acknowledgments for each
request. The bottom line is that we should always shoot for an odd number of servers.

We allow quorum sets other than majority quorums, but that is a discussion for a more
advanced chapter. We discuss it in Chapter 10.

Sessions
Before executing any request against a ZooKeeper ensemble, a client must establish a
session with the service. The concept of sessions is very important and quite critical for
the operation of ZooKeeper. All operations a client submits to ZooKeeper are associated
to a session. When a session ends for any reason, the ephemeral nodes created during
that session disappear.

When a client creates a ZooKeeper handle using a specific language binding, it estab‐
lishes a session with the service. The client initially connects to any server in the en‐
semble, and only to a single server. It uses a TCP connection to communicate with the

ZooKeeper Architecture | 25

www.it-ebooks.info

http://www.it-ebooks.info/

server, but the session may be moved to a different server if the client has not heard
from its current server for some time. Moving a session to a different server is handled
transparently by the ZooKeeper client library.

Sessions offer order guarantees, which means that requests in a session are executed in
FIFO (first in, first out) order. Typically, a client has only a single session open, so its
requests are all executed in FIFO order. If a client has multiple concurrent sessions,
FIFO ordering is not necessarily preserved across the sessions. Consecutive sessions of
the same client, even if they don’t overlap in time, also do not necessarily preserve FIFO
order. Here is how it can happen in this case:

• Client establishes a session and makes two consecutive asynchronous calls to
create /tasks and /workers.

• First session expires.
• Client establishes another session and makes an asynchronous call to
create /assign.

In this sequence of calls, it is possible that only /tasks and /assign have been created,
which preserves FIFO ordering for the first session but violates it across sessions.

Getting Started with ZooKeeper
To get started, you need to download the ZooKeeper distribution. ZooKeeper is an
Apache project hosted at http://zookeeper.apache.org. If you follow the download links,
you should end up downloading a compressed TAR file named something like
zookeeper-3.4.5.tar.gz. On Linux, Mac OS X, or any other UNIX-like system you can
use the following command to extract the distribution:

tar -xvzf zookeeper-3.4.5.tar.gz

If you are using Windows, you will need to use a decompression tool such as WinZip
to extract the distribution.

You will also need to have Java installed. Java 6 is required to run ZooKeeper.

In the distribution directory you will find a bin directory that contains the scripts needed
to start ZooKeeper. The scripts that end in .sh are designed to run on UNIX platforms
(Linux, Mac OS X, etc.), and the scripts that end in .cmd are for Windows. The conf
directory holds configuration files. The lib directory contains Java JAR files, which are
third-party files needed to run ZooKeeper. Later we will need to refer to the directory
in which you extracted the ZooKeeper distribution. We will refer to this directory as
{PATH_TO_ZK}.

26 | Chapter 2: Getting to Grips with ZooKeeper

www.it-ebooks.info

http://zookeeper.apache.org
http://www.it-ebooks.info/

First ZooKeeper Session
Let’s set up ZooKeeper locally in standalone mode and create a session. To do this, we
use the zkServer and zkCli tools that come with the ZooKeeper distribution under
bin/. Experienced administrators typically use them for debugging and administration,
but it turns out that they are great for getting beginners familiar with ZooKeeper as well.

Assuming you have downloaded and unpackaged a ZooKeeper distribution, go to a
shell, change directory (cd) to the project’s root, and rename the sample configuration
file:

mv conf/zoo_sample.cfg conf/zoo.cfg

Although optional, it might be a good idea to move the data directory out of /tmp to
avoid having ZooKeeper filling up your root partition. You can change its location in
the zoo.cfg file:

dataDir=/users/me/zookeeper

To finally start a server, execute the following:

bin/zkServer.sh start
JMX enabled by default
Using config: ../conf/zoo.cfg
Starting zookeeper ... STARTED
#

This server command makes the ZooKeeper server run in the background. To have it
running in the foreground in order to see the output of the server, you can run the
following:

bin/zkServer.sh start-foreground

This option gives you much more verbose output and allows you to see what’s going on
with the server.

We are now ready to start a client. In a different shell under the project root, run the
following:

bin/zkCli.sh
.
.
.
<some omitted output>
.
.
.
2012-12-06 12:07:23,545 [myid:] - INFO [main:ZooKeeper@438] -
Initiating client connection, connectString=localhost:2181
sessionTimeout=30000 watcher=org.apache.zookeeper.
ZooKeeperMain$MyWatcher@2c641e9a
Welcome to ZooKeeper!
2012-12-06 12:07:23,702 [myid:] - INFO [main-SendThread

Getting Started with ZooKeeper | 27

www.it-ebooks.info

http://www.it-ebooks.info/

(localhost:2181):ClientCnxn$SendThread@966] - Opening
socket connection to server localhost/127.0.0.1:2181.
Will not attempt to authenticate using SASL (Unable to
locate a login configuration)
JLine support is enabled
2012-12-06 12:07:23,717 [myid:] - INFO [main-SendThread
(localhost:2181):ClientCnxn$SendThread@849] - Socket
connection established to localhost/127.0.0.1:2181, initiating
session [zk: localhost:2181(CONNECTING) 0]
2012-12-06 12:07:23,987 [myid:] - INFO [main-SendThread
(localhost:2181):ClientCnxn$SendThread@1207] - Session
establishment complete on server localhost/127.0.0.1:2181,
sessionid = 0x13b6fe376cd0000, negotiated timeout = 30000

WATCHER::

WatchedEvent state:SyncConnected type:None path:null

The client starts the procedure to establish a session.
The client tries to connect to localhost/127.0.0.1:2181.
The client’s connection is successful and the server proceeds to initiate a new
session.
The session initialization completes successfully.
The server sends the client a SyncConnected event.

Let’s have a look at the output. There are a number of lines just telling us how the various
environment variables have been set and what JARs the client is using. We’ll ignore them
for the purposes of this example and focus on the session establishment, but take your
time to analyze the full output on your screen.

Toward the end of the output, we see log messages referring to session establishment.
The first one says “Initiating client connection.” The message pretty much says what is
happening, but an additional important detail is that it is trying to connect to one of the
servers in the localhost/127.0.0.1:2181 connect string sent by the client. In this case,
the string contains only localhost, so this is the one the connection will go for. Next
we see a message about SASL, which we will ignore, followed by a confirmation that the
client successfully established a TCP connection with the local ZooKeeper server. The
last message of the log confirms the session establishment and gives us its ID:
0x13b6fe376cd0000. Finally, the client library notifies the application with a SyncCon
nected event. Applications are supposed to implement Watcher objects that process
such events. We will talk more about events in the next section.

Just to get a bit more familiar with ZooKeeper, let’s list the znodes under the root and
create a znode. Let’s first confirm that the tree is empty at this point, aside from
the /zookeeper znode that marks the metadata tree that the ZooKeeper service
maintains:

28 | Chapter 2: Getting to Grips with ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

WATCHER::

WatchedEvent state:SyncConnected type:None path:null

[zk: localhost:2181(CONNECTED) 0] ls /
[zookeeper]

What happened here? We have executed ls / and we see that there is only /zookeeper
there. Now we create a znode called /workers and make sure that it is there as follows:

WATCHER::

WatchedEvent state:SyncConnected type:None path:null

[zk: localhost:2181(CONNECTED) 0]
[zk: localhost:2181(CONNECTED) 0] ls /
[zookeeper]
[zk: localhost:2181(CONNECTED) 1] create /workers ""
Created /workers
[zk: localhost:2181(CONNECTED) 2] ls /
[workers, zookeeper]
[zk: localhost:2181(CONNECTED) 3]

Znode Data
When we create the /workers znode, we specify an empty string ("")
to say that there is no data we want to store in the znode at this point.
That parameter in this interface, however, allows us to store arbitrary
strings in the ZooKeeper znodes. For example, we could have re‐
placed "" with "workers".

To wrap up this exercise, we delete the znode and exit:

[zk: localhost:2181(CONNECTED) 3] delete /workers
[zk: localhost:2181(CONNECTED) 4] ls /
[zookeeper]
[zk: localhost:2181(CONNECTED) 5] quit
Quitting...
2012-12-06 12:28:18,200 [myid:] - INFO [main-EventThread:ClientCnxn$
EventThread@509] - EventThread shut down
2012-12-06 12:28:18,200 [myid:] - INFO [main:ZooKeeper@684] - Session:
0x13b6fe376cd0000 closed

Observe that the znode /workers has been deleted and the session has now been closed.
To clean up, let’s also stop the ZooKeeper server:

bin/zkServer.sh stop
JMX enabled by default
Using config: ../conf/zoo.cfg
Stopping zookeeper ... STOPPED
#

Getting Started with ZooKeeper | 29

www.it-ebooks.info

http://www.it-ebooks.info/

States and the Lifetime of a Session
The lifetime of a session corresponds to the period between its creation and its end,
whether it is closed gracefully or expires because of a timeout. To talk about what hap‐
pens in a session, we need to consider the possible states that a session can be in and
the possible events that can change its state.

The main possible states of a session are mostly self-explanatory: CONNECTING, CONNEC
TED, CLOSED, and NOT_CONNECTED. The state transitions depend on various events that
happen between the client and the service (Figure 2-6).

Figure 2-6. Session states and transitions

A session starts at the NOT_CONNECTED state and transitions to CONNECTING (arrow 1 in
Figure 2-6) with the initialization of the ZooKeeper client. Normally, the connection to
a ZooKeeper server succeeds and the session transitions to CONNECTED (arrow 2). When
the client loses its connection to the ZooKeeper server or doesn’t hear from the server,
it transitions back to CONNECTING (arrow 3) and tries to find another ZooKeeper server.
If it is able to find another server or to reconnect to the original server, it transitions
back to CONNECTED once the server confirms that the session is still valid. Otherwise, it
declares the session expired and transitions to CLOSED (arrow 4). The application can
also explicitly close the session (arrows 4 and 5).

Waiting on CONNECTING During Network Partitions
If a client disconnects from a server due to a timeout, the client re‐
mains in the CONNECTING state. If the disconnection happens because
the client has been partitioned away from the ZooKeeper ensemble, it
will remain in this state until either it closes the session explicitly, or
the partition heals and the client hears from a ZooKeeper server that
the session has expired. We have this behavior because the ZooKeep‐
er ensemble is the one responsible for declaring a session expired, not
the client. Until the client hears that a ZooKeeper session has ex‐
pired, the client cannot declare the session expired. The client may
choose to close the session, however.

30 | Chapter 2: Getting to Grips with ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

One important parameter you should set when creating a session is the session timeout,
which is the amount of time the ZooKeeper service allows a session before declaring it
expired. If the service does not see messages associated to a given session during time
t, it declares the session expired. On the client side, if it has heard nothing from the
server at 1/3 of t, it sends a heartbeat message to the server. At 2/3 of t, the ZooKeeper
client starts looking for a different server, and it has another 1/3 of t to find one.

Which Server Does It Try to Connect To?
In quorum mode a client has multiple choices of servers to connect to,
whereas in standalone mode it must try to reconnect to the single
server available. In quorum mode, the application is supposed to pass
a list of servers the client can connect to and choose from.

When trying to connect to a different server, it is important for the ZooKeeper state of
this server to be at least as fresh as the last ZooKeeper state the client has observed. A
client cannot connect to a server that has not seen an update that the client might have
seen. ZooKeeper determines freshness by ordering updates in the service. Every change
to the state of a ZooKeeper deployment is totally ordered with respect to all other exe‐
cuted updates. Consequently, if a client has observed an update in position i, it cannot
connect to a server that has only seen iʹ < i. In the ZooKeeper implementation, the
transaction identifiers that the system assigns to each update establish the order.

Figure 2-7 illustrates the use of transaction identifiers (zxids) for reconnecting. After
the client disconnects from s1 because it times out, it tries s2, but s2 has lagged behind
and does not reflect a change known to the client. However, s3 has seen the same changes
as the client, so it is safe to connect.

ZooKeeper with Quorums
The configuration we have used so far is for a standalone server. If the server is up, the
service is up, but if the server fails, the whole service comes down with it. This doesn’t
quite live up to the promise of a reliable coordination service. To truly get reliability, we
need to run multiple servers.

Fortunately, we can run multiple servers even if we only have a single machine. We just
need to set up a more sophisticated configuration.

In order for servers to contact each other, they need some contact information. In theory
servers can use multicasts to discover each other, but we want to support ZooKeeper
ensembles that span multiple networks in addition to single networks that support
multiple ensembles.

Getting Started with ZooKeeper | 31

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-7. Example of client reconnecting

To accomplish this, we are going to use the following configuration file:

tickTime=2000
initLimit=10
syncLimit=5
dataDir=./data
clientPort=2181
server.1=127.0.0.1:2222:2223
server.2=127.0.0.1:3333:3334
server.3=127.0.0.1:4444:4445

We’ll concentrate on the last three lines here, the server.n entries. The rest are general
configuration parameters that will be explained in Chapter 10.

Each server.n entry specifies the address and port numbers used by ZooKeeper server
n. There are three colon-separated fields for each server.n entry. The first field is the
hostname or IP address of server n. The second and third fields are TCP port numbers
used for quorum communication and leader election. Because we are starting up three
server processes on the same machine, we need to use different port numbers for each
entry. Normally, when running each server process on its own server, each server entry
will use the same port numbers.

We also need to set up some data directories. We can do this from the command line
with the following commands:

mkdir z1
mkdir z1/data
mkdir z2

32 | Chapter 2: Getting to Grips with ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

mkdir z2/data
mkdir z3
mkdir z3/data

When we start up a server, it needs to know which server it is. A server figures out its
ID by reading a file named myid in the data directory. We can create these files with the
following commands:

echo 1 > z1/data/myid
echo 2 > z2/data/myid
echo 3 > z3/data/myid

When a server starts up, it finds the data directory using the dataDir parameter in the
configuration file. It obtains the server ID from mydata and then uses the corresponding
server.n entry to set up the ports it listens on. When we run ZooKeeper server processes
on different machines, they can all use the same client ports and even use exactly the
same configuration files. But for this example, running on one machine, we need to
customize the client ports for each server.

So, first we create z1/z1.cfg using the configuration file we discussed at the beginning of
this section. We then create configurations z2/z2.cfg and z3/z3.cfg by changing client
Port to be 2182 and 2183, respectively.

Now we can start a server. Let’s begin with z1:

$ cd z1
$ {PATH_TO_ZK}/bin/zkServer.sh start ./z1.cfg

Log entries for the server go to zookeeper.out. Because we have only started one of three
ZooKeeper servers, the service will not be able to come up. In the log we should see
entries of the form:

... [myid:1] - INFO [QuorumPeer[myid=1]/...:2181:QuorumPeer@670] - LOOKING

... [myid:1] - INFO [QuorumPeer[myid=1]/...:2181:FastLeaderElection@740] -
New election. My id = 1, proposed zxid=0x0
... [myid:1] - INFO [WorkerReceiver[myid=1]:FastLeaderElection@542] -
Notification: 1 ..., LOOKING (my state)
... [myid:1] - WARN [WorkerSender[myid=1]:QuorumCnxManager@368] - Cannot
open channel to 2 at election address /127.0.0.1:3334
 Java.net.ConnectException: Connection refused
 at java.net.PlainSocketImpl.socketConnect(Native Method)
 at java.net.PlainSocketImpl.doConnect(PlainSocketImpl.java:351)

The server is frantically trying to connect to other servers, and failing. If we start up
another server, we can form a quorum:

$ cd z2
$ {PATH_TO_ZK}/bin/zkServer.sh start ./z2.cfg

If we examine the zookeeper.out log for the second server, we see:

Getting Started with ZooKeeper | 33

www.it-ebooks.info

http://www.it-ebooks.info/

... [myid:2] - INFO [QuorumPeer[myid=2]/...:2182:Leader@345] - LEADING
- LEADER ELECTION TOOK - 279
... [myid:2] - INFO [QuorumPeer[myid=2]/...:2182:FileTxnSnapLog@240] -
Snapshotting: 0x0 to ./data/version-2/snapshot.0

This indicates that server 2 has been elected leader. If we now look at the log for server
1, we see:

... [myid:1] - INFO [QuorumPeer[myid=1]/...:2181:QuorumPeer@738] -
FOLLOWING
... [myid:1] - INFO [QuorumPeer[myid=1]/...:2181:ZooKeeperServer@162] -
Created server ...
... [myid:1] - INFO [QuorumPeer[myid=1]/...:2181:Follower@63] - FOLLOWING
- LEADER ELECTION TOOK - 212

Server 1 has also become active as a follower of server 2. We now have a quorum of
servers (two out of three) available.

At this point the service is available. Now we need to configure the clients to connect
to the service. The connect string lists all the host:port pairs of the servers that make
up the service. In this case, that string is "127.0.0.1:2181, 127.0.0.1:2182,
127.0.0.1:2183". (We’re including the third server, even though we never started it,
because it can illustrate some useful properties of ZooKeeper.)

We use zkCli.sh to access the cluster using:

$ {PATH_TO_ZK}/bin/zkCli.sh -server 127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183

When the server connects, we should see a message of the form:

[myid:] - INFO [...] - Session establishment
complete on server localhost/127.0.0.1:2182 ...

Note the port number, 2182 in this case, in the log message. If we stop the client with
Ctrl-C and restart it various times, we will see the port number change between 2181
and 2182. We may also notice a failed connection attempt to 2183 followed by a suc‐
cessful connection attempt to one of the other ports.

Simple Load Balancing
Clients connect in a random order to servers in the connect string.
This allows ZooKeeper to achieve simple load balancing. However, it
doesn’t allow clients to specify a preference for a server to connect to.
For example, if we have an ensemble of five ZooKeeper servers with
three on the West Coast and two on the East Coast, to make sure clients
connect only to local servers we may want to put only the East Coast
servers in the connect string of the East Coast clients, and only the
West Coast servers in the connect string of the West Coast clients.

34 | Chapter 2: Getting to Grips with ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

The connection attempts to show how you can achieve reliability by running multiple
servers (but in a production environment, of course, you will do so on different physical
hosts). For most of this book, including the next few chapters, we stick with a standalone
server for development because it is much easier to start and manage and makes the
examples more straightforward. One of the nice things about ZooKeeper is that, apart
from the connect string, it doesn’t matter to the clients how many servers make up the
ZooKeeper service.

Implementing a Primitive: Locks with ZooKeeper
One simple example of what we can do with ZooKeeper is implement critical sections
through locks. There are multiple flavors of locks (e.g., read/write locks, global locks)
and several ways to implement locks with ZooKeeper. Here we discuss a simple recipe
just to illustrate how applications can use ZooKeeper; we do not consider other variants
of locks.

Say that we have an application with n processes trying to acquire a lock. Recall that
ZooKeeper does not expose primitives directly, so we need to use the ZooKeeper inter‐
face to manipulate znodes and implement the lock. To acquire a lock, each process p
tries to create a znode, say /lock. If p succeeds in creating the znode, it has the lock and
can proceed to execute its critical section. One potential problem is that p could crash
and never release the lock. In this case, no other process will ever be able to acquire the
lock again, and the system could seize up in a deadlock. To avoid such situations, we
just have to make the /lock znode ephemeral when we create it.

Other processes that try to create /lock fail so long as the znode exists. So, they watch
for changes to /lock and try to acquire the lock again once they detect that /lock has
been deleted. Upon receiving a notification that /lock has been deleted, if a process pʹ
is still interested in acquiring the lock, it repeats the steps of attempting to create /lock
and, if another process has created the znode already, watching it.

Implementation of a Master-Worker Example
In this section we will implement some of the functionality of the master-worker ex‐
ample using the zkCli tool. This example is for didactic purposes only, and we do not
recommend building systems using zkCli. The goal of using zkCli is simply to illustrate
how we implement coordination recipes with ZooKeeper, putting aside much of the
detail needed for a real implementation. We’ll get into implementation details in the
next chapter.

The master-worker model involves three roles:
Master

The master watches for new workers and tasks, assigning tasks to available workers.

Implementation of a Master-Worker Example | 35

www.it-ebooks.info

http://www.it-ebooks.info/

Worker
Workers register themselves with the system, to make sure that the master sees they
are available to execute tasks, and then watch for new tasks.

Client
Clients create new tasks and wait for responses from the system.

Let’s now go over the different roles and the exact steps each role needs to perform.

The Master Role
Because only one process should be a master, a process must lock mastership in Zoo‐
Keeper to become the master. To do this, the process creates an ephemeral znode
called /master:

[zk: localhost:2181(CONNECTED) 0] create -e /master "master1.example.com:2223"
Created /master
[zk: localhost:2181(CONNECTED) 1] ls /
[master, zookeeper]
[zk: localhost:2181(CONNECTED) 2] get /master
"master1.example.com:2223"
cZxid = 0x67
ctime = Tue Dec 11 10:06:19 CET 2012
mZxid = 0x67
mtime = Tue Dec 11 10:06:19 CET 2012
pZxid = 0x67
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x13b891d4c9e0005
dataLength = 26
numChildren = 0
[zk: localhost:2181(CONNECTED) 3]

Create a master znode to get mastership. We use the -e flag to indicate that we
are creating an ephemeral znode.
List the root of the ZooKeeper tree.
Get the metadata and data of the /master znode.

What has just happened? We first created an ephemeral znode with path /master. We
added the host information to the znode in case others need to contact it outside Zoo‐
Keeper. It is not strictly necessary to add the host information, but we did so just to
show that we can add data if needed. To make the znode ephemeral, we added the -e
flag. Remember that an ephemeral node is automatically deleted if the session in which
it has been created closes or expires.

Let’s say now that we use two processes for the master role, although at any point in time
there can be at most one active master. The other process is a backup master. Say that

36 | Chapter 2: Getting to Grips with ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

the other process, unaware that a master has been elected already, also tries to create
a /master znode. Let’s see what happens:

[zk: localhost:2181(CONNECTED) 0] create -e /master "master2.example.com:2223"
Node already exists: /master
[zk: localhost:2181(CONNECTED) 1]

ZooKeeper tells us that a /master node already exists. This way, the second process
knows that there is already a master. However, it is possible that the active master may
crash, and the backup master may need to take over the role of active master. To detect
this, we need to set a watch on the /master node as follows:

[zk: localhost:2181(CONNECTED) 0] create -e /master "master2.example.com:2223"
Node already exists: /master
[zk: localhost:2181(CONNECTED) 1] stat /master true
cZxid = 0x67
ctime = Tue Dec 11 10:06:19 CET 2012
mZxid = 0x67
mtime = Tue Dec 11 10:06:19 CET 2012
pZxid = 0x67
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x13b891d4c9e0005
dataLength = 26
numChildren = 0
[zk: localhost:2181(CONNECTED) 2]

The stat command gets the attributes of a znode and allows us to set a watch on the
existence of the znode. Having the parameter true after the path sets the watch. In the
case that the active primary crashes, we observe the following:

[zk: localhost:2181(CONNECTED) 0] create -e /master "master2.example.com:2223"
Node already exists: /master
[zk: localhost:2181(CONNECTED) 1] stat /master true
cZxid = 0x67
ctime = Tue Dec 11 10:06:19 CET 2012
mZxid = 0x67
mtime = Tue Dec 11 10:06:19 CET 2012
pZxid = 0x67
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x13b891d4c9e0005
dataLength = 26
numChildren = 0
[zk: localhost:2181(CONNECTED) 2]
WATCHER::

WatchedEvent state:SyncConnected type:NodeDeleted path:/master

[zk: localhost:2181(CONNECTED) 2] ls /

Implementation of a Master-Worker Example | 37

www.it-ebooks.info

http://www.it-ebooks.info/

[zookeeper]
[zk: localhost:2181(CONNECTED) 3]

Note the NodeDeleted event at the end of the output. This event indicates that the active
primary has had its session closed, or it has expired. Note also that the /master znode
is no longer there. The backup primary should now try to become the active primary
by trying to create the /master znode again:

[zk: localhost:2181(CONNECTED) 0] create -e /master "master2.example.com:2223"
Node already exists: /master
[zk: localhost:2181(CONNECTED) 1] stat /master true
cZxid = 0x67
ctime = Tue Dec 11 10:06:19 CET 2012
mZxid = 0x67
mtime = Tue Dec 11 10:06:19 CET 2012
pZxid = 0x67
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x13b891d4c9e0005
dataLength = 26
numChildren = 0
[zk: localhost:2181(CONNECTED) 2]
WATCHER::

WatchedEvent state:SyncConnected type:NodeDeleted path:/master

[zk: localhost:2181(CONNECTED) 2] ls /
[zookeeper]
[zk: localhost:2181(CONNECTED) 3] create -e /master "master2.example.com:2223"
Created /master
[zk: localhost:2181(CONNECTED) 4]

Because it succeeds in creating the /master znode, the client now becomes the active
master.

Workers, Tasks, and Assignments
Before we discuss the steps taken by workers and clients, let’s first create three important
parent znodes, /workers, /tasks, and /assign:

[zk: localhost:2181(CONNECTED) 0] create /workers ""
Created /workers
[zk: localhost:2181(CONNECTED) 1] create /tasks ""
Created /tasks
[zk: localhost:2181(CONNECTED) 2] create /assign ""
Created /assign
[zk: localhost:2181(CONNECTED) 3] ls /
[assign, tasks, workers, master, zookeeper]
[zk: localhost:2181(CONNECTED) 4]

38 | Chapter 2: Getting to Grips with ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

The three new znodes are persistent znodes and contain no data. We use these znodes
in this example to tell us which workers are available, tell us when there are tasks to
assign, and make assignments to workers.

In a real application, these znodes need to be created either by a primary process before
it starts assigning tasks or by some bootstrap procedure. Regardless of how they are
created, once they exist, the master needs to watch for changes in the children
of /workers and /tasks:

[zk: localhost:2181(CONNECTED) 4] ls /workers true
[]
[zk: localhost:2181(CONNECTED) 5] ls /tasks true
[]
[zk: localhost:2181(CONNECTED) 6]

Note that we have used the optional true parameter with ls, as we did before with stat
on the master. The true parameter, in this case, creates a watch for changes to the set
of children of the corresponding znode.

The Worker Role
The first step by a worker is to notify the master that it is available to execute tasks. It
does so by creating an ephemeral znode representing it under /workers. Workers use
their hostnames to identify themselves:

[zk: localhost:2181(CONNECTED) 0] create -e /workers/worker1.example.com
 "worker1.example.com:2224"
Created /workers/worker1.example.com
[zk: localhost:2181(CONNECTED) 1]

Note from the output that ZooKeeper confirms that the znode has been created. Recall
that the master has set a watch for changes to the children of /workers. Once the worker
creates a znode under /workers, the master observes the following notification:

WATCHER::

WatchedEvent state:SyncConnected type:NodeChildrenChanged path:/workers

Next, the worker needs to create a parent znode, /assign/worker1.example.com, to
receive assignments, and watch it for new tasks by executing ls with the second pa‐
rameter set to true:

[zk: localhost:2181(CONNECTED) 0] create -e /workers/worker1.example.com
 "worker1.example.com:2224"
Created /workers/worker1.example.com
[zk: localhost:2181(CONNECTED) 1] create /assign/worker1.example.com ""
Created /assign/worker1.example.com
[zk: localhost:2181(CONNECTED) 2] ls /assign/worker1.example.com true
[]
[zk: localhost:2181(CONNECTED) 3]

Implementation of a Master-Worker Example | 39

www.it-ebooks.info

http://www.it-ebooks.info/

The worker is now ready to receive assignments. We will look at assignments next, as
we discuss the role of clients.

The Client Role
Clients add tasks to the system. For the purposes of this example, it doesn’t matter what
the task really consists of. Here we assume that the client asks the master-worker system
to run a command cmd. To add a task to the system, a client executes the following:

[zk: localhost:2181(CONNECTED) 0] create -s /tasks/task- "cmd"
Created /tasks/task-0000000000

We make the task znode sequential to create an order for the tasks added, essentially
providing a queue. The client now has to wait until the task is executed. The worker
that executes the task creates a status znode for the task once the task completes. The
client determines that the task has been executed when it sees that a status znode for
the task has been created; the client consequently must watch for the creation of the
status znode:

[zk: localhost:2181(CONNECTED) 1] ls /tasks/task-0000000000 true
[]
[zk: localhost:2181(CONNECTED) 2]

The worker that executes the task creates a status znode as a child of /tasks/
task-0000000000. That is the reason for watching the children of /tasks/

task-0000000000 with ls.

Once the task znode is created, the master observes the following event:

[zk: localhost:2181(CONNECTED) 6]
WATCHER::

WatchedEvent state:SyncConnected type:NodeChildrenChanged path:/tasks

The master next checks the new task, gets the list of available workers, and assigns it to
worker1.example.com:

[zk: 6] ls /tasks
[task-0000000000]
[zk: 7] ls /workers
[worker1.example.com]
[zk: 8] create /assign/worker1.example.com/task-0000000000 ""
Created /assign/worker1.example.com/task-0000000000
[zk: 9]

The worker receives a notification that a new task has been assigned:

[zk: localhost:2181(CONNECTED) 3]
WATCHER::

WatchedEvent state:SyncConnected type:NodeChildrenChanged
path:/assign/worker1.example.com

40 | Chapter 2: Getting to Grips with ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

The worker then checks the new task and sees that the task has been assigned to it:

WATCHER::

WatchedEvent state:SyncConnected type:NodeChildrenChanged
path:/assign/worker1.example.com

[zk: localhost:2181(CONNECTED) 3] ls /assign/worker1.example.com
[task-0000000000]
[zk: localhost:2181(CONNECTED) 4]

Once the worker finishes executing the task, it adds a status znode to /tasks:

[zk: localhost:2181(CONNECTED) 4] create /tasks/task-0000000000/status "done"
Created /tasks/task-0000000000/status
[zk: localhost:2181(CONNECTED) 5]

and the client receives a notification and checks the result:

WATCHER::

WatchedEvent state:SyncConnected type:NodeChildrenChanged
path:/tasks/task-0000000000

[zk: localhost:2181(CONNECTED) 2] get /tasks/task-0000000000
"cmd"
cZxid = 0x7c
ctime = Tue Dec 11 10:30:18 CET 2012
mZxid = 0x7c
mtime = Tue Dec 11 10:30:18 CET 2012
pZxid = 0x7e
cversion = 1
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 5
numChildren = 1
[zk: localhost:2181(CONNECTED) 3] get /tasks/task-0000000000/status
"done"
cZxid = 0x7e
ctime = Tue Dec 11 10:42:41 CET 2012
mZxid = 0x7e
mtime = Tue Dec 11 10:42:41 CET 2012
pZxid = 0x7e
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 8
numChildren = 0
[zk: localhost:2181(CONNECTED) 4]

The client checks the content of the status znode to determine what has happened to
the task. In this case, it has been successfully executed and the result is “done.” Tasks

Implementation of a Master-Worker Example | 41

www.it-ebooks.info

http://www.it-ebooks.info/

can of course be more sophisticated and even involve another distributed system. The
bottom line here is that regardless of what the task actually is, the mechanism to execute
it and convey the results through ZooKeeper is in essence the same.

Takeaway Messages
We have gone through a number of basic ZooKeeper concepts in this chapter. We have
seen the basic functionality that ZooKeeper offers through its API and explored some
important concepts about its architecture, like the use of quorums for replication. It is
not important at this point to understand how the ZooKeeper replication protocol
works, but it is important to understand the notion of quorums because you specify the
number of servers when deploying ZooKeeper. Another important concept discussed
here is sessions. Session semantics are critical for the ZooKeeper guarantees because
they mostly refer to sessions.

To provide a preliminary understanding of how to work with ZooKeeper, we have used
the zkCli tool to access a ZooKeeper server and execute requests against it. We have
shown the main operations of the master-worker example executed with this tool. When
implementing a real ZooKeeper application, you should not use this tool; it is there
mostly for debugging and monitoring purposes. Instead, you’ll use one of the language
bindings ZooKeeper offers. In the next chapters, we will be using Java to implement our
examples.

42 | Chapter 2: Getting to Grips with ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

PART II

Programming with ZooKeeper

This part of the book can be read by programmers to develop skills and the right ap‐
proaches to using ZooKeeper for coordination in their distributed programs. Zoo‐
Keeper comes with API bindings for Java and C. Both bindings have the same basic
structures and signatures. Because the Java binding is the most popular and easiest to
use, we will be using this binding in our examples. Chapter 7 introduces the C binding.
The source code for the master-worker example is available in a GitHub repository.

www.it-ebooks.info

https://github.com/fpj/zookeeper-book-example
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Getting Started with the ZooKeeper API

In the previous chapter we used zkCli to introduce the basic ZooKeeper operations. In
this chapter we are going to see how we actually use the API in applications. Here we
give an introduction of how to program with the ZooKeeper API, showing how to create
a session and implement a watcher. We also start coding our master-worker example.

Setting the ZooKeeper CLASSPATH
We need to set up the appropriate classpath to run and compile ZooKeeper Java code.
ZooKeeper uses a number of third-party libraries in addition to the ZooKeeper JAR file.
To make typing a little easier and to make the text a little more readable we will use an
environment variable CLASSPATH with all the required libraries. The script zkEnv.sh in
the bin directory of the ZooKeeper distribution sets this environment variable for us.
We need to source it using the following:

ZOOBINDIR="<path_to_distro>/bin"
. "$ZOOBINDIR"/zkEnv.sh

(On Windows, use the call command instead of the period and the zkEnv.cmd script.)

Once we run this script, the CLASSPATH variable will be set correctly. We will use it to
compile and run our Java programs.

Creating a ZooKeeper Session
The ZooKeeper API is built around a ZooKeeper handle that is passed to every API call.
This handle represents a session with ZooKeeper. As shown in Figure 3-1, a session that
is established with one ZooKeeper server will migrate to another ZooKeeper server if
its connection is broken. As long as the session is alive, the handle will remain valid,
and the ZooKeeper client library will continually try to keep an active connection to a
ZooKeeper server to keep the session alive. If the handle is closed, the ZooKeeper client

45

www.it-ebooks.info

http://www.it-ebooks.info/

library will tell the ZooKeeper servers to kill the session. If ZooKeeper decides that a
client has died, it will invalidate the session. If a client later tries to reconnect to a Zoo‐
Keeper server using the handle that corresponds to the invalidated session, the Zoo‐
Keeper server informs the client library that the session is no longer valid and the handle
returns errors for all operations.

Figure 3-1. Session migration between two servers

The constructor that creates a ZooKeeper handle usually looks like:

ZooKeeper(
 String connectString,
 int sessionTimeout,
 Watcher watcher)

where:
connectString

Contains the hostnames and ports of the ZooKeeper servers. We listed those servers
when we used zkCli to connect to the ZooKeeper service.

sessionTimeout

The time in milliseconds that ZooKeeper waits without hearing from the client
before declaring the session dead. For now we will just use a value of 15000, for 15
seconds. This means that if ZooKeeper cannot communicate with a client for more
than 15 seconds, ZooKeeper will terminate the client’s session. Note that this time‐
out is rather high, but it is useful for the experiments we will be doing later. Zoo‐
Keeper sessions typically have a timeout of 5–10 seconds.

watcher

An object we need to create that will receive session events. Because Watcher is an
interface, we will need to implement a class and then instantiate it to pass an instance
to the ZooKeeper constructor. Clients use the Watcher interface to monitor the

46 | Chapter 3: Getting Started with the ZooKeeper API

www.it-ebooks.info

http://www.it-ebooks.info/

health of the session with ZooKeeper. Events will be generated when a connection
is established or lost to a ZooKeeper server. They can also be used to monitor
changes to ZooKeeper data. Finally, if a session with ZooKeeper expires, an event
is delivered through the Watcher interface to notify the client application.

Implementing a Watcher
To receive notifications from ZooKeeper, we need to implement watchers. Let’s look a
bit more closely at the Watcher interface. It has the following declaration:

public interface Watcher {
 void process(WatchedEvent event);
}

Not much of an interface, right? We’ll be using it heavily, but for now we will simply
print the event. So, let’s start our example implementation of the Master:

import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Watcher;

public class Master implements Watcher {
 ZooKeeper zk;
 String hostPort;

 Master(String hostPort) {
 this.hostPort = hostPort;
 }

 void startZK() {
 zk = new ZooKeeper(hostPort, 15000, this);
 }

 public void process(WatchedEvent e) {
 System.out.println(e);
 }

 public static void main(String args[])
 throws Exception {
 Master m = new Master(args[0]);

 m.startZK();

 // wait for a bit
 Thread.sleep(60000);
 }
}

Creating a ZooKeeper Session | 47

www.it-ebooks.info

http://www.it-ebooks.info/

In the constructor, we do not actually instantiate a ZooKeeper object. Instead,
we just save the hostPort for later. Java best practices dictate that other methods
of an object should not be called until the object’s constructor has finished.
Because this object implements Watcher and because once we instantiate a Zoo
Keeper object its Watcher callback may be invoked, we must construct the Zoo
Keeper object after the Master constructor has returned.
Construct the ZooKeeper object using the Master object as the Watcher callback.
This simple example does not have complex event handling. Instead, we will
simply print out the event that we receive.
Once we have connected to ZooKeeper, there will be a background thread that
will maintain the ZooKeeper session. This thread is a daemon thread, which
means that the program may exit even if the thread is still active. Here we sleep
for a bit so that we can see some events come in before the program exits.

We can compile this simple example using the following:

$ javac -cp $CLASSPATH Master.java

Once we have compiled Master.java, we run it and see the following:

$ java -cp $CLASSPATH Master 127.0.0.1:2181
... - INFO [...] - Client environment:zookeeper.version=3.4.5-1392090, ...
...
... - INFO [...] - Initiating client connection,
connectString=127.0.0.1:2181 ...
... - INFO [...] - Opening socket connection to server
localhost/127.0.0.1:2181. ...
... - INFO [...] - Socket connection established to localhost/127.0.0.1:2181,
initiating session
... - INFO [...] - Session establishment complete on server
localhost/127.0.0.1:2181, ...
WatchedEvent state:SyncConnected type:None path:null

The ZooKeeper client API produces various log messages to help the user understand
what is happening. The logging is rather verbose and can be disabled using configuration
files, but these messages are invaluable during development and even more invaluable
if something unexpected happens after deployment.

The first few log messages describe the ZooKeeper client implementation and
environment.
These log messages will be generated whenever a client initiates a connection to
a ZooKeeper server. This may be the initial connection or subsequent
reconnections.

48 | Chapter 3: Getting Started with the ZooKeeper API

www.it-ebooks.info

http://www.it-ebooks.info/

This message shows information about the connection after it has been
established. It shows the host and port that the client connected to and the actual
session timeout that was negotiated. If the requested session timeout is too short
to be detected by the server or too long, the server will adjust the session timeout.
This final line did not come from the ZooKeeper library; it is the WatchEvent
object that we print in our implementation of Watcher.process(WatchedE
vent e).

This example run assumes that all the needed libraries are in the lib subdirectory. It also
assumes that the configuration of log4j.conf is in the conf subdirectory. You can find
these two directories in the ZooKeeper distribution that you are using. If you see the
following:

log4j:WARN No appenders could be found for logger
 (org.apache.zookeeper.ZooKeeper).
log4j:WARN Please initialize the log4j system properly.

it means that you have not put the log4j.conf file in the classpath.

Running the Watcher Example
What would have happened if we had started the master without starting the ZooKeeper
service? Give it a try. Stop the service, then run Master. What do you see? The last line
in the previous output, with the WatchedEvent, is not present. The ZooKeeper library
isn’t able to connect to the ZooKeeper server, so it doesn’t tell us anything.

Now try starting the server, starting the Master, and then stopping the server while the
Master is still running. You should see the SyncConnected event followed by the Dis
connected event.

When developers see the Disconnected event, some think they need to create a new
ZooKeeper handle to reconnect to the service. Do not do that! See what happens when
you start the server, start the Master, and then stop and start the server while the Master
is still running. You should see the SyncConnected event followed by the Disconnec
ted event and then another SyncConnected event. The ZooKeeper client library takes
care of reconnecting to the service for you. Unfortunately, network outages and server
failures happen. Usually, ZooKeeper can deal with these failures.

It is important to remember that these failures also happen to ZooKeeper itself, however.
A ZooKeeper server may fail or lose network connectivity, which will cause the scenario
we simulated when we stopped the master. As long as the ZooKeeper service is made
up of at least three servers, the failure of a single server will not cause a service outage.
Instead, the client will see a Disconnected event quickly followed by a SyncConnec
ted event.

Creating a ZooKeeper Session | 49

www.it-ebooks.info

http://www.it-ebooks.info/

ZooKeeper Manages Connections
Don’t try to manage ZooKeeper client connections yourself. The Zoo‐
Keeper client library monitors the connection to the service and not
only tells you about connection problems, but actively tries to rees‐
tablish communication. Often the library can quickly reestablish the
session with minimal disruption to your application. Needlessly clos‐
ing and starting a new session just causes more load on the system and
longer availability outages.

It doesn’t look like the client is doing much besides sleeping, but as we have seen by the
events coming in, there are some things happening behind the scenes. We can also see
what is happening on the ZooKeeper service side. ZooKeeper has two main management
interfaces: JMX and four-letter words. We discuss these interfaces in depth in Chap‐
ter 10. Right now we will use the stat and dump four-letter words to see what is hap‐
pening on the server.

To use these words, we need to telnet to the client port, 2181, and type them in (pressing
the Enter key after the word). For example, if we start the Master and use the stat four-
letter word, we should see the following:

$ telnet 127.0.0.1 2181
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
stat
ZooKeeper version: 3.4.5-1392090, built on 09/30/2012 17:52 GMT
Clients:
 /127.0.0.1:39470[1](queued=0,recved=3,sent=3)
 /127.0.0.1:39471[0](queued=0,recved=1,sent=0)

Latency min/avg/max: 0/5/48
Received: 34
Sent: 33
Connections: 2
Outstanding: 0
Zxid: 0x17
Mode: standalone
Node count: 4
Connection closed by foreign host.

We see from this output that there are two clients connected to the ZooKeeper server.
One is Master, and the other is the Telnet connection.

If we start the Master and use the dump four-letter word, we should see the following:

$ telnet 127.0.0.1 2181
Trying 127.0.0.1...
Connected to 127.0.0.1.

50 | Chapter 3: Getting Started with the ZooKeeper API

www.it-ebooks.info

http://www.it-ebooks.info/

Escape character is '^]'.
dump
SessionTracker dump:
Session Sets (3):
0 expire at Wed Nov 28 20:34:00 PST 2012:
0 expire at Wed Nov 28 20:34:02 PST 2012:
1 expire at Wed Nov 28 20:34:04 PST 2012:
 0x13b4a4d22070006
ephemeral nodes dump:
Sessions with Ephemerals (0):
Connection closed by foreign host.

We see from this output that there is one active session. This is the session that belongs
to Master. We also see when this session is going to expire. This expiration time is based
on the session timeout that we specified when we created the ZooKeeper object.

Let’s kill the Master and then repeatedly use dump to see the active sessions. You’ll notice
that it takes a while for the session to go away. This is because the server will not kill the
session until the session timeout has passed. Of course, the client will continually extend
the expiration time as long as it keeps an active connection to a ZooKeeper server.

When the Master finishes, it would be nice if its session went away immediately. This
is what the ZooKeeper.close() method does. Once close is called, the session repre‐
sented by the ZooKeeper object gets destroyed.

Let’s add the close to our example program:

 void stopZK() throws Exception { zk.close(); }

 public static void main(String args[]) throws Exception {
 Master m = new Master(args[0]);

 m.startZK();

 // wait for a bit
 Thread.sleep(60000);

 m.stopZK();
 }

Now we can run Master again and use the dump four-letter word to see whether the
session is still active. Because Master explicitly closed the session, ZooKeeper did not
need to wait for the session to time out before shutting it down.

Getting Mastership
Now that we have a session, our Master needs to take mastership. We need to be careful,
though, because there can be only one master. We also need to have multiple processes
running that could become master just in case the acting master fails.

Getting Mastership | 51

www.it-ebooks.info

http://www.it-ebooks.info/

To ensure that only one master process is active at a time, we use ZooKeeper to imple‐
ment the simple leader election algorithm described in “The Master Role” on page 36.
In this algorithm, all potential masters try to create the /master znode, but only one
will succeed. The process that succeeds becomes the master.

We need two things to create /master. First, we need the initial data for the znode.
Usually we put some information about the process that becomes the master in this
initial data. For now we will have each process pick a random server ID and use that for
the initial data. We also need an access control list (ACL) for the new znode. Often
ZooKeeper is used within a trusted environment, so an open ACL is used.

There is a constant, ZooDefs.Ids.OPEN_ACL_UNSAFE, that gives all permissions to ev‐
eryone. (As the name indicates, this is a very unsafe ACL to use in untrusted
environments.)

ZooKeeper provides per-znode ACLs with a pluggable authentication method, so if we
need to we can restrict who can do what to which znode, but for this simple example,
let’s stick with OPEN_ACL_UNSAFE. Of course, we want the /master znode to go away if
the acting master dies. As we saw in “Persistent and ephemeral znodes” on page 19,
ZooKeeper has ephemeral znodes for this purpose. We’ll define an EPHEMERAL znode
that will automatically be deleted by ZooKeeper when the session that created it closes
or is made invalid.

So, we will add the following lines to our code:

 String serverId = Integer.toHexString(random.nextInt());

 void runForMaster() {
 zk.create("/master",
 serverId.getBytes(),
 OPEN_ACL_UNSAFE,
 CreateMode.EPHEMERAL);
 }

The znode we are trying to create is /master. If a znode already exists with that
name, the create will fail. We are going to store the unique ID that corresponds
to this server as the data of the /master znode.
Only byte arrays may be stored as data, so we convert the int to a byte array.
As we mentioned, we are using an open ACL.
And we are creating an EPHEMERAL node.

However, we aren’t done yet. create throws two exceptions: KeeperException and
InterruptedException. We need to make sure we handle these exceptions, specifically
the ConnectionLossException (which is a subclass of KeeperException) and Inter
ruptedException. For the rest of the exceptions we can abort the operation and move

52 | Chapter 3: Getting Started with the ZooKeeper API

www.it-ebooks.info

http://www.it-ebooks.info/

on, but in the case of these two exceptions, the create might have actually succeeded,
so if we are the master we need to handle them.

The ConnectionLossException occurs when a client becomes disconnected from a
ZooKeeper server. This is usually due to a network error, such as a network partition,
or the failure of a ZooKeeper server. When this exception occurs, it is unknown to the
client whether the request was lost before the ZooKeeper servers processed it, or if they
processed it but the client did not receive the response. As we described earlier, the
ZooKeeper client library will reestablish the connection for future requests, but the
process must figure out whether a pending request has been processed or whether it
should reissue the request.

The InterruptedException is caused by a client thread calling Thread.interrupt. This
is often part of application shutdown, but it may also be used in other application-
dependent ways. This exception literally interrupts the local client request processing
in the process and leaves the request in an unknown state.

Because both exceptions cause a break in the normal request processing, the developer
cannot assume anything about the state of the request in process. When handling these
exceptions, the developer must figure out the state of the system before proceeding. In
case there was a leader election, we want to make sure that we haven’t been made the
master without knowing it. If the create actually succeeded, no one else will be able to
become master until the acting master dies, and if the acting master doesn’t know it has
mastership, no process will be acting as the master.

When handling the ConnectionLossException, we must find out which process, if any,
has created the /master znode, and start acting as the leader if that process is ours. We
do this by using the getData method:

byte[] getData(
 String path,
 bool watch,
 Stat stat)

where:
path

Like with most of the other ZooKeeper methods, the first parameter is the path of
the znode from which we will be getting the data.

watch

Indicates whether we want to hear about future changes to the data returned. If set
to true, we will get events on the Watcher object we set when we created the Zoo‐
Keeper handle. There is another version of this method that takes a Watcher object
that will receive an event if changes happen. We will see how to watch for changes
in future chapters, but for now we will set this parameter to false because we just
want to know what the current data is.

Getting Mastership | 53

www.it-ebooks.info

http://www.it-ebooks.info/

stat

The last parameter is a Stat structure that the getData method can fill in with
metadata about the znode.

Return value
If this method returns successfully (doesn’t throw an exception), the byte array will
contain the data of the znode.

So, let’s change that code segment to the following, introducing some exception handling
into our runForMaster method:

 String serverId = Integer.toString(Random.nextLong());
 boolean isLeader = false;

 // returns true if there is a master
 boolean checkMaster() {
 while (true) {
 try {
 Stat stat = new Stat();
 byte data[] = zk.getData("/master", false, stat);
 isLeader = new String(data).equals(serverId));
 return true;
 } catch (NoNodeException e) {
 // no master, so try create again
 return false;
 } catch (ConnectionLossException e) {
 }
 }
 }

 void runForMaster() throws InterruptedException {
 while (true) {
 try {
 zk.create("/master", serverId.getBytes(),
 OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
 isLeader = true;
 break;
 } catch (NodeExistsException e) {
 isLeader = false;
 break;
 } catch (ConnectionLossException e) {
 }
 if (checkMaster()) break;
 }
 }

We surround the zk.create with a try block so that we can handle the Connec
tionLossException.
This is the create request that will establish the process as the master if it
succeeds.

54 | Chapter 3: Getting Started with the ZooKeeper API

www.it-ebooks.info

http://www.it-ebooks.info/

Although the body of the catch block for the ConnectionLossException is
empty because we do not break, this catch will cause the process to continue to
the next line.
Check for an active master and retry if there is still no elected master.
Check for an active master by trying to get the data for the /master znode.
This line of the example shows why we need the data used in creating the /master
znode: if /master exists, we use the data contained in /master to determine who
the leader is. If the process received a ConnectionLossException, the current
process may actually be the master; it is possible that its create request actually
was processed, but the response was lost.
We let the InterruptedException bubble up the call stack by letting it simply
pass through to the caller.

In our example, we simply pass the InterruptedException to the caller and thus let it
bubble up. Unfortunately, in Java there aren’t clear guidelines for how to deal with thread
interruption, or even what it means. Sometimes the interruptions are used to signal
threads that things are being shut down and they need to clean up. In other cases, an
interruption is used to get control of a thread, but execution of the application continues.

Our handling of InterruptedException depends on our context. If the Interrupte
dException will bubble up and eventually close our zk handle, we can let it go up the
stack and everything will get cleaned up when the handle is closed. If the zk handle is
not closed, we need to figure out if we are the master before rethrowing the exception
or asynchronously continuing the operation. This latter case is particularly tricky and
requires careful design to handle properly.

Our main method for the Master now becomes:

 public static void main(String args[]) throws Exception {
 Master m = new Master(args[0]);

 m.startZK();

 m.runForMaster();

 if (isLeader) {
 System.out.println("I'm the leader");
 // wait for a bit
 Thread.sleep(60000);
 } else {
 System.out.println("Someone else is the leader");
 }

 m.stopZK();
 }

Getting Mastership | 55

www.it-ebooks.info

http://www.it-ebooks.info/

Our call to runForMaster, a method we implemented earlier, will return either
when the current process has become the master or when another process is the
master.
Once we develop the application logic for the master, we will start executing that
logic here, but for now we content ourselves with announcing victory and then
waiting 60 seconds before exiting main.

Because we aren’t handling the InterruptedException directly, we will simply exit the
program (and therefore close our ZooKeeper handle) if it happens. Of course, the master
doesn’t do much before shutting down. In the next chapter, the master will actually start
managing the tasks that get queued to the system, but for now let’s start filling in the
other components.

Getting Mastership Asynchronously
In ZooKeeper, all synchronous calls have corresponding asynchronous calls. This allows
us to issue many calls at a time from a single thread and may also simplify our imple‐
mentation. Let’s revisit the mastership example, this time using asynchronous calls.

Here is the asynchronous version of create:

void create(String path,
 byte[] data,
 List<ACL> acl,
 CreateMode createMode,
 AsyncCallback.StringCallback cb,
 Object ctx)

This version of create looks exactly like the synchronous version except for two addi‐
tional parameters:

An object containing the function that serves as the callback
A user-specified context (an object that will be passed through to the callback
when it is invoked)

This call will return immediately, usually before the create request has been sent to the
server. The callback object often takes data, which we can pass through the context
argument. When the result of the create request is received from the server, the context
argument will be given to the application through the callback object.

Notice that this create doesn’t throw any exceptions, which can simplify things for us.
Because the call is not waiting for the create to complete before returning, we don’t
have to worry about the InterruptedException; because any request errors are encoded
in the first parameter in the callback, we don’t have to worry about KeeperException.

56 | Chapter 3: Getting Started with the ZooKeeper API

www.it-ebooks.info

http://www.it-ebooks.info/

The callback object implements StringCallback with one method:

void processResult(int rc, String path, Object ctx, String name)

The asynchronous method simply queues the request to the ZooKeeper server. Trans‐
mission happens on another thread. When responses are received, they are processed
on a dedicated callback thread. To preserve order, there is a single callback thread and
responses are processed in the order they are received.

The parameters of processResult have the following meanings:
rc

Returns the result of the call, which will be OK or a code corresponding to a Keep
erException

path

The path that we passed to the create

ctx

Whatever context we passed to the create

name

The name of the znode that was created

For now, path and name will be equal if we succeed, but if CreateMode.SEQUENTIAL is
used, this will not be true.

Callback Processing
Because a single thread processes all callbacks, if a callback blocks, it
blocks all callbacks that follow it. This means that generally you should
not do intensive operations or blocking operations in a callback. There
may be times when it’s legitimate to use the synchronous API in a
callback, but it should generally be avoided so that subsequent call‐
backs can be processed quickly.

So, let’s start writing our master functionality. Here, we create a masterCreateCall
back object that will receive the results of the create call:

 static boolean isLeader;

 static StringCallback masterCreateCallback = new StringCallback() {
 void processResult(int rc, String path, Object ctx, String name) {
 switch(Code.get(rc)) {
 case CONNECTIONLOSS:
 checkMaster();
 return;
 case OK:
 isLeader = true;

Getting Mastership | 57

www.it-ebooks.info

http://www.it-ebooks.info/

 break;
 default:
 isLeader = false;
 }
 System.out.println("I'm " + (isLeader ? "" : "not ") +
 "the leader");
 }
 };

 void runForMaster() {
 zk.create("/master", serverId.getBytes(), OPEN_ACL_UNSAFE,
 CreateMode.EPHEMERAL, masterCreateCallback, null);
 }

We get the result of the create call in rc and convert it to a Code enum to switch
on. rc corresponds to a KeeperException if rc is not zero.
If the create fails due to a connection loss, we will get the CONNECTIONLOSS result
code rather than the ConnectionLossException. When we get a connection loss,
we need to check on the state of the system and figure out what we need to do
to recover. We do this in the checkMaster method, which we will implement
next.
Woohoo! We are the leader. For now we will just set isLeader to true.
If any other problem happened, we did not become the leader.
We kick things off in runForMaster when we pass the masterCreateCallback
object to the create method. We pass null as the context object because there
isn’t any information that we need to pass from runForMaster to the master
CreateCallback.processResult method.

Now we have to implement the checkMaster method. This method looks a bit different
because, unlike in the synchronous case, we string the processing logic together in the
callbacks, so we do not see a sequence of events in checkMaster. Instead, we see things
get kicked off with the getData method. Subsequent processing will continue in the
DataCallback when the getData operation completes:

 DataCallback masterCheckCallback = new DataCallback() {
 void processResult(int rc, String path, Object ctx, byte[] data,
 Stat stat) {
 switch(Code.get(rc)) {
 case CONNECTIONLOSS:
 checkMaster();
 return;
 case NONODE:
 runForMaster();
 return;
 }
 }

58 | Chapter 3: Getting Started with the ZooKeeper API

www.it-ebooks.info

http://www.it-ebooks.info/

 }

 void checkMaster() {
 zk.getData("/master", false, masterCheckCallback, null);
 }

The basic logic of the synchronous and asynchronous versions is the same, but in the
asynchronous version we do not have a while loop. Instead, the error handling is done
with callbacks and new asynchronous operations.

At this point the synchronous version may appear simpler to implement than the asyn‐
chronous version, but as we will see in the next chapter, our applications are often driven
by asynchronous change notifications, so building everything asynchronously may re‐
sult in simpler code in the end. Note that asynchronous calls also do not block the
application, allowing it to make progress with other things—perhaps even submitting
new ZooKeeper operations.

Setting Up Metadata
We will use the asynchronous API to set up the metadata directories. Our master-worker
design depends on three other directories: /tasks, /assign, and /workers. We can
count on some kind of system setup to make sure everything is created before the system
is started, or a master can make sure these directories are created every time it starts up.
The following code segment will create these paths. There isn’t really any error handling
in this example apart from handling a connection loss:

public void bootstrap() {
 createParent("/workers", new byte[0]);
 createParent("/assign", new byte[0]);
 createParent("/tasks", new byte[0]);
 createParent("/status", new byte[0]);
}

void createParent(String path, byte[] data) {
 zk.create(path,
 data,
 Ids.OPEN_ACL_UNSAFE,
 CreateMode.PERSISTENT,
 createParentCallback,
 data);
}

StringCallback createParentCallback = new StringCallback() {
 public void processResult(int rc, String path, Object ctx, String name) {
 switch (Code.get(rc)) {
 case CONNECTIONLOSS:
 createParent(path, (byte[]) ctx);

 break;
 case OK:

Getting Mastership | 59

www.it-ebooks.info

http://www.it-ebooks.info/

 LOG.info("Parent created");

 break;
 case NODEEXISTS:
 LOG.warn("Parent already registered: " + path);

 break;
 default:
 LOG.error("Something went wrong: ",
 KeeperException.create(Code.get(rc), path));
 }
 }
};

We don’t have any data to put in these znodes, so we are just passing an empty
byte array.
Because of that, we don’t have to worry about keeping track of the data that
corresponds to each znode, but often there is data unique to a path, so we will
track the data using the callback context of each create call. It may seem a bit
strange that we pass data in both the second and fourth parameters of create,
but the data passed in the second parameter is the data to be written to the new
znode and the data passed in the fourth will be made available to the create
ParentCallback.
If the callback gets a CONNECTIONLOSS return code, we want to simply retry the
create, which we can do by calling createPath. However, to call createPath
we need the data that was used in the original create. We have that data in the
ctx object that was passed to the callback because we passed the creation data
as the fourth parameter of the create. Because the context object is separate
from the callback object, we can use a single callback object for all of the creates.

In this example you will notice that there isn’t any difference between a file (a znode
that contains data) and a directory (a znode that contains children). Every znode can
have both.

Registering Workers
Now that we have a master, we need to set up the workers so that the master has someone
to boss around. According to our design, each worker is going to create an ephemeral
znode under /workers. We can do this quite simply with the following code. We will
use the data in the znode to indicate the state of the worker:

import java.util.*;

import org.apache.zookeeper.AsyncCallback.DataCallback;
import org.apache.zookeeper.AsyncCallback.StringCallback;
import org.apache.zookeeper.AsyncCallback.VoidCallback;

60 | Chapter 3: Getting Started with the ZooKeeper API

www.it-ebooks.info

http://www.it-ebooks.info/

import org.apache.zookeeper.*;
import org.apache.zookeeper.ZooDefs.Ids;
import org.apache.zookeeper.AsyncCallback.ChildrenCallback;
import org.apache.zookeeper.KeeperException.Code;
import org.apache.zookeeper.data.Stat;

import org.slf4j.*;

public class Worker implements Watcher {
 private static final Logger LOG = LoggerFactory.getLogger(Worker.class);

 ZooKeeper zk;
 String hostPort;
 String serverId = Integer.toHexString(random.nextInt());

 Worker(String hostPort) {
 this.hostPort = hostPort;
 }

 void startZK() throws IOException {
 zk = new ZooKeeper(hostPort, 15000, this);
 }

 public void process(WatchedEvent e) {
 LOG.info(e.toString() + ", " + hostPort);
 }

 void register() {
 zk.create("/workers/worker-" + serverId,
 "Idle".getBytes(),
 Ids.OPEN_ACL_UNSAFE,
 CreateMode.EPHEMERAL,
 createWorkerCallback, null);
 }

 StringCallback createWorkerCallback = new StringCallback() {
 public void processResult(int rc, String path, Object ctx,
 String name) {
 switch (Code.get(rc)) {
 case CONNECTIONLOSS:
 register();
 break;
 case OK:
 LOG.info("Registered successfully: " + serverId);
 break;
 case NODEEXISTS:
 LOG.warn("Already registered: " + serverId);
 break;
 default:
 LOG.error("Something went wrong: "
 + KeeperException.create(Code.get(rc), path));
 }

Registering Workers | 61

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 };

 public static void main(String args[]) throws Exception {
 Worker w = new Worker(args[0]);
 w.startZK();

 w.register();

 Thread.sleep(30000);
 }
}

We will be putting the status of the worker in the data of the znode that represents
the worker.
If the process dies we want the znode representing the worker to get cleaned up,
so we use the EPHEMERAL flag. That means that we can simply look at the children
of /workers to get the list of available workers.
Because this process is the only one that creates the ephemeral znode
representing the process, if there is a connection loss during the creation of the
znode, it can simply retry the creation.

As we have seen earlier, because we are registering an ephemeral node, if the worker
dies the registered znode representing that node will go away. So this is all we need to
do on the worker’s side for group membership.

We are also putting status information in the znode representing the worker. This allows
us to check the status of the worker by simply querying ZooKeeper. Currently, we have
only the initializing and idle statuses; however, once the worker starts actually doing
things, we will want to set other status information.

Here is our implementation of setStatus. This method works a little bit differently
from methods we have seen before. We want to be able to set the status asynchronously
so that it doesn’t delay regular processing:

 StatCallback statusUpdateCallback = new StatCallback() {
 public void processResult(int rc, String path, Object ctx, Stat stat) {
 switch(Code.get(rc)) {
 case CONNECTIONLOSS:
 updateStatus((String)ctx);
 return;
 }
 }
 };

 synchronized private void updateStatus(String status) {
 if (status == this.status) {
 zk.setData("/workers/" + name, status.getBytes(), -1,
 statusUpdateCallback, status);

62 | Chapter 3: Getting Started with the ZooKeeper API

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }

 public void setStatus(String status) {
 this.status = status;
 updateStatus(status);
 }

We save our status locally in case a status update fails and we need to retry.
Rather than doing the update in setStatus, we create an updateStatus method
that we can use in setStatus and in the retry logic.
There is a subtle problem with asynchronous requests that we retry on
connection loss: things may get out of order. ZooKeeper is very good about
maintaining order for both requests and responses, but a connection loss makes
a gap in that ordering, because we are creating a new request. So, before we
requeue a status update, we need to make sure that we are requeuing the current
status; otherwise, we just drop it. We do this check and retry in a synchronized
block.
We do an unconditional update (the third parameter; the expected version is –1,
so version checking is disabled), and we pass the status we are setting as the
context object.
If we get a connection loss event, we simply need to call updateStatus with the
status we are updating. (We passed the status in the context parameter of set
Data.) The updateStatus method will do checks for race conditions, so we do
not need to do those here.

To understand the problems with reissuing operations on a connection loss a bit more,
consider the following scenario:

1. The worker starts working on task-1, so it sets the status to working on task-1.
2. The client library tries to issue the setData, but encounters networking problems.
3. After the client library determines that the connection has been lost with ZooKeeper

and before statusUpdateCallback is called, the worker finishes task-1 and be‐
comes idle.

4. The worker asks the client library to issue a setData with Idle as the data.
5. Then the client processes the connection lost event; if updateStatus does not check

the current status, it would then issue a setData with working on task-1.
6. When the connection to ZooKeeper is reestablished, the client library faithfully

issues the two setData operations in order, which means that the final state would
be working on task-1.

Registering Workers | 63

www.it-ebooks.info

http://www.it-ebooks.info/

By checking the current status before reissuing the setData in the updateStatus meth‐
od, we avoid this scenario.

Order and ConnectionLossException
ZooKeeper is very strict about maintaining order and has very strong
ordering guarantees. However, care should be taken when thinking
about ordering in the presence of multiple threads. One common sce‐
nario where multiple threads can cause errors involves retry logic in
callbacks. When reissuing a request due to a ConnectionLossExcep
tion, a new request is created and may therefore be ordered after
requests issued on other threads that occurred after the original
request.

Queuing Tasks
The final component of the system is the Client application that queues new tasks to
be executed on a worker. We will be adding znodes under /tasks that represent com‐
mands to be carried out on the worker. We will be using sequential znodes, which gives
us two benefits. First, the sequence number will indicate the order in which the tasks
were queued. Second, the sequence number will create unique paths for tasks with
minimal work. Our Client code looks like this:

import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Watcher;

public class Client implements Watcher {
 ZooKeeper zk;
 String hostPort;

 Client(String hostPort) { this.hostPort = hostPort; }

 void startZK() throws Exception {
 zk = new ZooKeeper(hostPort, 15000, this);
 }

 String queueCommand(String command) throws KeeperException {
 while (true) {
 try {
 String name = zk.create("/tasks/task-",
 command.getBytes(), OPEN_ACL_UNSAFE,
 CreateMode.SEQUENTIAL);
 return name;
 break;
 } catch (NodeExistsException e) {
 throw new Exception(name + " already appears to be running");
 } catch (ConnectionLossException e) {
 }

64 | Chapter 3: Getting Started with the ZooKeeper API

www.it-ebooks.info

http://www.it-ebooks.info/

 }

 public void process(WatchedEvent e) { System.out.println(e); }

 public static void main(String args[]) throws Exception {
 Client c = new Client(args[0]);

 c.start();

 String name = c.queueCommand(args[1]);
 System.out.println("Created " + name);
 }
}

We are creating the znode representing a task under /tasks. The name will be
prefixed with task-.
Because we are using CreateMode.SEQUENTIAL, a monotonically increasing
suffix will be appended to task-. This guarantees that a unique name will be
created for each new task and the task ordering will be established by ZooKeeper.
Because we can’t be sure what the sequence number will be when we call cre
ate with CreateMode.SEQUENTIAL, the create method returns the name of the
new znode.
If we lose a connection while we have a create pending, we will simply retry
the create. This may create multiple znodes for the task, causing it to be created
twice. For many applications this execute-at-least-once policy may work fine.
Applications that require an execute-at-most-once policy must do more work:
we would need to create each of our task znodes with a unique ID (the session
ID, for example) encoded in the znode name. We would then retry the create
only if a connection loss exception happened and there were no znodes
under /tasks with the session ID in their name.

When we run the Client application and pass a command, a new znode will be created
in /tasks. It is not an ephemeral znode, so even after the Client application ends, any
znodes it has created will remain.

The Admin Client
Finally, we will write a simple AdminClient that will show the state of the system. One
of the nice things about ZooKeeper is that you can use the zkCli utility to look at the
state of the system, but usually you will want to write your own admin client to more
quickly and easily administer the system. In this example, we will use getData and
getChildren to get the state of our master-worker system.

The Admin Client | 65

www.it-ebooks.info

http://www.it-ebooks.info/

These methods are simple to use. Because they don’t change the state of the system, we
can simply propagate errors that we encounter without having to deal with cleanup.

This example uses the synchronous versions of the calls. The methods also have a watch
parameter that we are setting to false because we really want to see the current state of
the system and will not be watching for changes. We will see in the next chapter how
we use this parameter to track changes in the system. For now, here’s our Admin
Client code:

import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Watcher;

public class AdminClient implements Watcher {
 ZooKeeper zk;
 String hostPort;

 AdminClient(String hostPort) { this.hostPort = hostPort; }

 void start() throws Exception {
 zk = new ZooKeeper(hostPort, 15000, this);
 }

 void listState() throws KeeperException {
 try {
 Stat stat = new Stat();
 byte masterData[] = zk.getData("/master", false, stat);
 Date startDate = new Date(stat.getCtime());
 System.out.println("Master: " + new String(masterData) +
 " since " + startDate);
 } catch (NoNodeException e) {
 System.out.println("No Master");
 }

 System.out.println("Workers:");
 for (String w: zk.getChildren("/workers", false)) {
 byte data[] = zk.getData("/workers/" + w, false, null);
 String state = new String(data);
 System.out.println("\t" + w + ": " + state);
 }

 System.out.println("Tasks:");
 for (String t: zk.getChildren("/assign", false)) {
 System.out.println("\t" + t);
 }

 }

 public void process(WatchedEvent e) { System.out.println(e); }

 public static void main(String args[]) throws Exception {
 AdminClient c = new AdminClient(args[0]);

66 | Chapter 3: Getting Started with the ZooKeeper API

www.it-ebooks.info

http://www.it-ebooks.info/

 c.start();

 c.listState();
 }
}

We put the name of the master as the data for the /master znode, so getting the
data for the /master znode will give us the name of the current master. We aren’t
interested in changes, which is why we pass false to the second parameter.
We can use the information in the Stat structure to know how long the current
master has been master. The ctime is the number of seconds since the epoch
after which the znode was created. See java.lang.System.currentTimeMil
lis() for details.
The ephemeral znode has two pieces of information: it indicates that the worker
is running, and its data has the state of the worker.

The AdminClient is very simple: it simply runs through the data structures for our
master-worker example. Try it out by starting and stopping a Master and some Work
ers, and running the Client a few times to queue up some tasks. The AdminClient will
show the state of the system as things change.

You might be wondering if there is any advantage to using the asynchronous API in the
AdminClient. ZooKeeper has a pipelined implementation designed to handle thousands
of simultaneous requests. This is important because there are various sources of latency
in the system, the largest of which are the disk and the network. Both of these compo‐
nents have queues that are used to efficiently use their bandwidth. The getData method
does not do any disk access, but it must go over the network. With synchronous methods
we let the pipeline drain between each request. If we are using the AdminClient in a
relatively small system with tens of workers and hundreds of tasks, this might not be a
big deal, but if we increase those numbers by an order of magnitude, the delay might
become significant.

Consider a scenario in which the round trip time for a request is 1 ms. If the process
needs to read 10,000 znodes, 10 seconds will be spent just on network delays. We can
shorten that time to something much closer to 1 second using the asynchronous API.

Using the basic implementation of the Master, Worker, and Client, we have the begin‐
nings of our master-worker system, but right now nothing is really happening. When
a task gets queued, the master needs to wake up and assign the task to a worker. Workers
need to find out about tasks assigned to them. Clients need to be able to know when
tasks are finished. If a master fails, another master-in-waiting needs to take over. If a
worker fails, its tasks need to get assigned to other workers. In upcoming chapters we
will cover the concepts necessary to implement this needed functionality.

The Admin Client | 67

www.it-ebooks.info

http://bit.ly/19VoKe3
http://bit.ly/19VoKe3
http://www.it-ebooks.info/

Takeaway Messages
The commands we use in zkCli correspond closely to the API we use when programming
with ZooKeeper, so it can be useful to do some initial experimentation with zkCli to try
out different ways to structure application data. The API is so close to the commands
in zkCli that you could easily write an application that matches commands used when
experimenting with zkCli. There are some caveats, though. First, when using zkCli we
usually are in a stable environment where unexpected failures don’t happen. For code
we are going to deploy, we have to handle error cases that complicate the code substan‐
tially. The ConnectionLossException in particular requires the developer to examine
the state of the system to properly recover. (Remember, ZooKeeper helps organize dis‐
tributed state and provides a framework for handling failures; it doesn’t make failures
go away, unfortunately.) Second, it is worthwhile to become comfortable with the asyn‐
chronous API. It can give big performance benefits and can simplify error recovery.

68 | Chapter 3: Getting Started with the ZooKeeper API

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Dealing with State Change

It is not uncommon to have application processes that need to learn about changes to
the state of a ZooKeeper ensemble. For instance, in our example in Chapter 1, backup
masters need to know that the primary master has crashed, and workers need to know
when new tasks have been assigned to them. ZooKeeper clients could, of course, poll
the ZooKeeper ensemble periodically to determine whether changes have occurred.
Polling, however, is not efficient, especially when the expected changes are somewhat
rare.

For example, let’s consider backup masters; they need to know when the primary has
crashed so that they can fail over. To reduce the time it takes to recover from the primary
crash, we need to poll frequently—say, every 50 ms—just for an example of aggressive
polling. In this case, each backup master generates 20 requests/second. If there are
multiple backup masters, we multiply this frequency by the number of backups to obtain
the total request traffic generated just to poll ZooKeeper for the status of the primary
master. Even if such an amount of traffic is easy for a system like ZooKeeper to deal
with, primary master crashes should be rare, so most of this traffic is unnecessary.
Suppose we therefore reduce the amount of polling traffic to ZooKeeper by increasing
the period between requests for the status of the primary, say to 1 second. The problem
with increasing this period is that it increases the time it takes to recover from a primary
crash.

We can avoid this tuning and polling traffic altogether by having ZooKeeper notify
interested clients of concrete events. The primary mechanism ZooKeeper provides to
deal with changes is watches. With watches, a client registers its request to receive a one-
time notification of a change to a given znode. For example, we can have the primary
master create an ephemeral znode representing the master lock, and the backup masters
register a watch for the existence of the master lock. In the case that the primary crashes,
the master lock is automatically deleted and the backup masters are notified. Once the
backup masters receive their notifications, they can start a new master election by trying

69

www.it-ebooks.info

http://www.it-ebooks.info/

to create a new ephemeral znode to represent the master lock, as we showed in “Getting
Mastership” on page 51.

Watches and notifications form a general mechanism that enables clients to observe
changes by other clients without having to continually poll ZooKeeper. We have illus‐
trated with the master example, but the general mechanism is applicable to a wide variety
of situations.

One-Time Triggers
Before getting deeper into watches, let’s establish some terminology. We talk about an
event to denote the execution of an update to a given znode. A watch is a one-time trigger
associated with a znode and a type of event (e.g., data is set in the znode, or the znode
is deleted). When the watch is triggered by an event, it generates a notification. A no‐
tification is a message to the application client that registered the watch to inform this
client of the event.

When an application process registers a watch to receive a notification, the watch is
triggered at most once and upon the first event that matches the condition of the watch.
For example, say that the client needs to know when a given znode /z is deleted (e.g., a
backup master). The client executes an exists operation on /z with the watch flag set
and waits for the notification. The notification comes in the form of a callback to the
application client.

Each watch is associated with the session in which the client sets it. If the session expires,
pending watches are removed. Watches do, however, persist across connections to dif‐
ferent servers. Say that a ZooKeeper client disconnects from a ZooKeeper server and
connects to a different server in the ensemble. The client will send a list of outstanding
watches. When reregistering the watch, the server will check to see if the watched znode
has changed since the watch was registered. If the znode has changed, a watch event will
be sent to the client; otherwise, the watch will be reregistered at the new server.

Wait, Can I Miss Events with One-Time Triggers?
The short answer is yes: an application can miss events between receiving a notification
and registering for another watch. However, this issue deserves more discussion. Miss‐
ing events is typically not a problem because any changes that have occurred during the
period between receiving a notification and registering a new watch can be captured by
reading the state of ZooKeeper directly.

Say that a worker receives a notification indicating that a new task has been assigned to
it. To receive the new task, the worker reads the list of tasks. If several more tasks have
been assigned to the worker after it received the notification, reading the list of tasks
via a getChildren call returns all tasks. The getChildren call also sets a new watch,
guaranteeing that the worker will not miss tasks.

70 | Chapter 4: Dealing with State Change

www.it-ebooks.info

http://www.it-ebooks.info/

Actually, having one notification amortized across multiple events is a positive aspect.
It makes the notification mechanism much more lightweight than sending a notification
for every event for applications that have a high rate of updates. To give a trivial example,
if every notification captures two events on average, we are generating only 0.5 notifi‐
cations per event instead of 1 notification per event.

Getting More Concrete: How to Set Watches
All read operations in the ZooKeeper API—getData, getChildren, and exists—have
the option to set a watch on the znode they read. To use the watch mechanism, we need
to implement the Watcher interface, which consists of implementing a process method:

public void process(WatchedEvent event);

The WatchedEvent data structure contains the following:

• The state of the ZooKeeper session (KeeperState): Disconnected, SyncConnec
ted, AuthFailed, ConnectedReadOnly, SaslAuthenticated, or Expired

• The event type (EventType): NodeCreated, NodeDeleted, NodeDataChanged, Node
ChildrenChanged, or None

• A znode path in the case that the watched event is not None

The first three events refer to a single znode, whereas the fourth event concerns the
children of the znode on which it is issued. We use None when the watched event is for
a change of the state of the ZooKeeper session.

There are two types of watches: data watches and child watches. Creating, deleting, or
setting the data of a znode successfully triggers a data watch. Both exists and getDa
ta set data watches. Only getChildren sets child watches, which are triggered when a
child znode is either created or deleted. For each event type, we have the following calls
for setting a watch:
NodeCreated

A watch is set with a call to exists.

NodeDeleted

A watch is set with a call to either exists or getData.

NodeDataChanged

A watch is set with either exists or getData.

NodeChildrenChanged

A watch is set with getChildren.

When creating a ZooKeeper object (see Chapter 3), we need to pass a default Watcher
object. The ZooKeeper client uses this watcher to notify the application of changes to

Getting More Concrete: How to Set Watches | 71

www.it-ebooks.info

http://www.it-ebooks.info/

the ZooKeeper state, in case the state of the session changes. For event notifications
related to ZooKeeper znodes, you can either use the default watcher or implement a
different one. For example, the getData call has two different ways of setting a watch:

public byte[] getData(final String path, Watcher watcher, Stat stat);
public byte[] getData(String path, boolean watch, Stat stat);

Both signatures pass the znode as the first argument. The first signature passes a new
Watcher object (which we must have created). The second signature tells the client to
use the default watcher, and only requires true as the second parameter of the call.

The stat input parameter is an instance of the Stat structure that ZooKeeper uses to
return information about the znode designated by path. The Stat structure contains
information about the znode, such as the timestamp of the last change (zxid) that
changed this znode and the number of children in the znode.

One important observation about watches is that currently it is not possible to remove
them once set. The only two ways to remove a watch are to have it triggered or for its
session to be closed or expired. This behavior is likely to change in future versions,
however, because the community has been working on it for version 3.5.0.

A Bit of Overloading
We use the same watch mechanism for notifying the application of
events related to the state of a ZooKeeper session and events related to
znode changes. Although session state changes and znode state
changes constitute independent sets of events, we rely upon the same
mechanism to deliver such events for simplicity.

A Common Pattern
Before we get into some snippets for the master-worker example, let’s take a quick look
at a pretty common code pattern used in ZooKeeper applications:

1. Make an asynchronous call.
2. Implement a callback object and pass it to the asynchronous call.
3. If the operation requires setting a watch, then implement a Watcher object and pass

it on to the asynchronous call.

A code sample for this pattern using an asynchronous exists call looks like this:

zk.exists("/myZnode",
 myWatcher,
 existsCallback,
 null);

72 | Chapter 4: Dealing with State Change

www.it-ebooks.info

http://www.it-ebooks.info/

Watcher myWatcher = new Watcher() {
 public void process(WatchedEvent e) {
 // Process the watch event
 }
}

StatCallback existsCallback = new StatCallback() {
 public void processResult(int rc, String path, Object ctx, Stat stat) {
 // Process the result of the exists call
 }
};

ZooKeeper exists call. Note that the call is asynchronous.
Watcher implementation.
exists callback.

As we will see next, we’ll make extensive use of this skeleton.

The Master-Worker Example
Let’s now look at how we deal with changes of state in the master-worker example. Here
is a list of tasks that require a component to wait for changes:

• Mastership changes
• Master waits for changes to the list of workers
• Master waits for new tasks to assign
• Worker waits for new task assignments
• Client waits for task execution result

We next show some code snippets to illustrate how to code these tasks with ZooKeeper.
We provide the complete example code as part of the additional material to this book.

Mastership Changes
Recall from “Getting Mastership” on page 51 that an application client elects itself master
by creating the /master znode (we call this “running for master”). If the znode already
exists, the application client determines that it is not the primary master and returns.
That implementation, however, does not tolerate a crash of the primary master. If the
primary master crashes, the backup masters won’t know about it. Consequently, we
need to set a watch on /master so that ZooKeeper notifies the client when /master is
deleted (either explicitly or because the session of the primary master has expired).

The Master-Worker Example | 73

www.it-ebooks.info

http://bit.ly/zookeeper-code
http://www.it-ebooks.info/

To set the watch, we create a new watcher named masterExistsWatcher and pass it to
exists. Upon a notification of /master being deleted, the process call defined in
masterExistsWatcher calls runForMaster:

StringCallback masterCreateCallback = new StringCallback() {
 public void processResult(int rc, String path, Object ctx, String name) {
 switch (Code.get(rc)) {
 case CONNECTIONLOSS:
 checkMaster();

 break;
 case OK:
 state = MasterStates.ELECTED;
 takeLeadership();

 break;
 case NODEEXISTS:
 state = MasterStates.NOTELECTED;
 masterExists();

 break;
 default:
 state = MasterStates.NOTELECTED;
 LOG.error("Something went wrong when running for master.",
 KeeperException.create(Code.get(rc), path));
 }
 }
};

void masterExists() {
 zk.exists("/master",
 masterExistsWatcher,
 masterExistsCallback,
 null);
}

Watcher masterExistsWatcher = new Watcher() {
 public void process(WatchedEvent e) {
 if(e.getType() == EventType.NodeDeleted) {
 assert "/master".equals(e.getPath());

 runForMaster();
 }
 }
};

In the case of a connection loss event, the client checks if the /master znode is
there because it doesn’t know if it has been able to create it or not.
If OK, then it simply takes leadership.
If someone else has already created the znode, then the client needs to watch it.

74 | Chapter 4: Dealing with State Change

www.it-ebooks.info

http://www.it-ebooks.info/

If anything unexpected happens, then it logs the error and doesn’t do anything
else.
This exists call is to set a watch on the /master znode.
If the /master znode is deleted, then it runs for master again.

Following the asynchronous style we used in “Getting Mastership Asynchronously” on
page 56, we also create a callback method for the exists call that takes care of a few
cases. First, it tries the exists operation again in the case of a connection loss event
because it needs to set a watch on /master. Second, it is possible for the /master znode
to be deleted between the execution of the create callback and the execution of the
exists operation. Consequently, we need to check whether stat is null whenever the
response from exists is positive (return code is OK). stat is null when the node does
not exist. Third, if the return is not OK or CONNECTIONLOSS, then we check for the /master
znode by getting its data. Say that the client session expires. In this case, the callback to
get the data of /master logs an error message and exits. Our exists callback looks like
this:

StatCallback masterExistsCallback = new StatCallback() {
 public void processResult(int rc, String path, Object ctx, Stat stat) {
 switch (Code.get(rc)) {
 case CONNECTIONLOSS:
 masterExists();

 break;
 case OK:
 if(stat == null) {
 state = MasterStates.RUNNING;
 runForMaster();
 }

 break;
 default:
 checkMaster();
 break;
 }
 }
};

In the case of a connection loss, just try again.
If it returns OK, run for master only in the case that the znode is gone.
If something unexpected happens, check if /master is there by getting its data.

The result of the exists operation over /master might be that the znode has been deleted.
In this case, the client needs to run for /master again because it is not guaranteed that
the watch was set before the znode was deleted. If the new attempt to become primary

The Master-Worker Example | 75

www.it-ebooks.info

http://www.it-ebooks.info/

fails, then the client knows that some other client succeeded and it tries to watch /master
again. In the case the notification for /master indicates that it has been created instead
of deleted, the client does not run for /master. At the same time, the corresponding
exists operation (the one that has set the watch) must have returned that /master doesn’t
exist, which triggers the procedure to run for /master from the exists callback.

Note that this pattern of running for master and executing exists to set a watch
on /master continues for as long as the client runs and does not become a primary
master. If it becomes the primary master and eventually crashes, the client can restart
and reexecute this code.

Figure 4-1 makes the possible interleavings of operations more explicit. If the create
operation executed when running for primary master succeeds (a), the application client
doesn’t have to do anything else. If the create operation fails, meaning that the node
already exists, the client executes an exists operation to set a watch on the /master
znode (b). Between running for master and executing the exists operation, it is possible
that the /master znode gets deleted. In this case, the exists call indicates that the znode
still exists, and the client simply waits for a notification. Otherwise, it tries to run for
master again, trying to create the /master znode. If creating the /master znode succeeds,
the watch is triggered, indicating that there has been a change to the znode (c). This
notification, however, is meaningless, because the client itself made the change. If the
create fails again, we restart the process by executing exists and setting a watch
on /master (d).

Figure 4-1. Running for master, possible interleavings

76 | Chapter 4: Dealing with State Change

www.it-ebooks.info

http://www.it-ebooks.info/

Master Waits for Changes to the List of Workers
New workers may be added to the system and old workers may be decommissioned at
any time. Workers might also crash before executing their assignments. To determine
the workers that are available at any one time, we register new workers with ZooKeeper
by adding a znode as a child of /workers. When a worker crashes or is simply removed
from the system, its session expires, automatically causing its znode to be removed.
Polite workers may also explicitly close their sessions without making ZooKeeper wait
for a session expiration.

The primary master uses getChildren to obtain the list of available workers and to
watch for changes to the list. Sample code to obtain the list and watch for changes is as
follows:

Watcher workersChangeWatcher = new Watcher() {
 public void process(WatchedEvent e) {
 if(e.getType() == EventType.NodeChildrenChanged) {
 assert "/workers".equals(e.getPath());

 getWorkers();
 }
 }
};

void getWorkers() {
 zk.getChildren("/workers",
 workersChangeWatcher,
 workersGetChildrenCallback,
 null);
}

ChildrenCallback workersGetChildrenCallback = new ChildrenCallback() {
 public void processResult(int rc, String path, Object ctx,
 List<String> children) {
 switch (Code.get(rc)) {
 case CONNECTIONLOSS:
 getWorkerList();

 break;
 case OK:
 LOG.info("Succesfully got a list of workers: "
 + children.size()
 + " workers");
 reassignAndSet(children);

 break;
 default:
 LOG.error("getChildren failed",
 KeeperException.create(Code.get(rc), path));
 }

The Master-Worker Example | 77

www.it-ebooks.info

http://www.it-ebooks.info/

 }
};

workersChangeWatcher is the watcher for the list of workers.
In the case of a CONNECTIONLOSS event, we need to reexecute the operation to
obtain the children and set the watch.
This call reassigns tasks of dead workers and sets the new list of workers.

We start by calling getWorkerList. This call executes getChildren asynchronously,
passing workersGetChildrenCallback to process the result of the operation. If the cli‐
ent disconnects from a server (CONNECTIONLOSS event), the watch is not set and we don’t
have a list of workers; we execute getWorkerList again to set the watch and obtain the
list of workers. Upon a successful execution of getChildren, we call reassignAndSet,
as in the following code:

ChildrenCache workersCache;

void reassignAndSet(List<String> children) {
 List<String> toProcess;

 if(workersCache == null) {
 workersCache = new ChildrenCache(children);
 toProcess = null;
 } else {
 LOG.info("Removing and setting");
 toProcess = workersCache.removedAndSet(children);
 }

 if(toProcess != null) {
 for(String worker : toProcess) {
 getAbsentWorkerTasks(worker);
 }
 }
 }

Here’s the cache that holds the last set of workers we have seen.
If this is the first time it is using the cache, then instantiate it.
The first time we get workers, there is nothing to do.
If it is not the first time, then we need to check if some worker has been removed.
If there is any worker that has been removed, then we need to reassign its tasks.

We use the cache because we need to remember what we have seen before. Say that we
get the list of workers for the first time. When we get the notification that the list of
workers has changed, we won’t know what exactly has changed even after reading it
again unless we keep the old values. The cache class for this example simply keeps the

78 | Chapter 4: Dealing with State Change

www.it-ebooks.info

http://www.it-ebooks.info/

last list the master has read and implements a couple of methods to determine what has
changed.

Watch upon CONNECTIONLOSS
A watch for a znode is set only if the operation is successful. If the
ZooKeeper operation fails to be executed because the client has dis‐
connected, then the application needs to call it again.

Master Waits for New Tasks to Assign
Like waiting for changes to the list of workers, the primary master waits for new tasks
to be added to /tasks. The master initially obtains the set of current tasks and sets a
watch for changes to the set. The set is represented in ZooKeeper by the children
of /tasks, and each child corresponds to a task. Once the master obtains tasks that have
not been assigned, it selects a worker at random and assigns the task to the worker. We
implement the assignment in assignTasks:

Watcher tasksChangeWatcher = new Watcher() {
 public void process(WatchedEvent e) {
 if(e.getType() == EventType.NodeChildrenChanged) {
 assert "/tasks".equals(e.getPath());

 getTasks();
 }
 }
};

void getTasks() {
 zk.getChildren("/tasks",
 tasksChangeWatcher,
 tasksGetChildrenCallback,
 null);
}

ChildrenCallback tasksGetChildrenCallback = new ChildrenCallback() {
 public void processResult(int rc,
 String path,
 Object ctx,
 List<String> children) {
 switch(Code.get(rc)) {
 case CONNECTIONLOSS:
 getTasks();

 break;
 case OK:
 if(children != null) {
 assignTasks(children);
 }

The Master-Worker Example | 79

www.it-ebooks.info

http://www.it-ebooks.info/

 break;
 default:
 LOG.error("getChildren failed.",
 KeeperException.create(Code.get(rc), path));
 }
 }
};

Watcher implementation to handle a notification that the list of tasks has
changed.
Get the list of tasks.
Assign tasks in the list.

Now we’ll implement assignTasks. It simply assigns each of the tasks in the list of
children of /tasks. Before creating the assignment znode, we get the task data with
getData:

void assignTasks(List<String> tasks) {
 for(String task : tasks) {
 getTaskData(task);
 }
}

void getTaskData(String task) {
 zk.getData("/tasks/" + task,
 false,
 taskDataCallback,
 task);
}

DataCallback taskDataCallback = new DataCallback() {
 public void processResult(int rc,
 String path,
 Object ctx,
 byte[] data,
 Stat stat) {
 switch(Code.get(rc)) {
 case CONNECTIONLOSS:
 getTaskData((String) ctx);

 break;
 case OK:
 /*
 * Choose worker at random.
 */
 int worker = rand.nextInt(workerList.size());
 String designatedWorker = workerList.get(worker);

 /*

80 | Chapter 4: Dealing with State Change

www.it-ebooks.info

http://www.it-ebooks.info/

 * Assign task to randomly chosen worker.
 */
 String assignmentPath = "/assign/" + designatedWorker + "/" +
 (String) ctx;
 createAssignment(assignmentPath, data);

 break;
 default:
 LOG.error("Error when trying to get task data.",
 KeeperException.create(Code.get(rc), path));
 }
 }
};

Get task data.
Select a worker randomly and assign the task to this worker.

We need to get the task data first because we delete the task znode under /tasks after
assigning it. This way the master doesn’t have to remember which tasks it has assigned.
Let’s look at the code for assigning a task:

void createAssignment(String path, byte[] data) {
 zk.create(path,
 data, Ids.OPEN_ACL_UNSAFE,
 CreateMode.PERSISTENT,
 assignTaskCallback,
 data);
}

StringCallback assignTaskCallback = new StringCallback() {
 public void processResult(int rc, String path, Object ctx, String name) {
 switch(Code.get(rc)) {
 case CONNECTIONLOSS:
 createAssignment(path, (byte[]) ctx);

 break;
 case OK:
 LOG.info("Task assigned correctly: " + name);
 deleteTask(name.substring(name.lastIndexOf("/") + 1));

 break;
 case NODEEXISTS:
 LOG.warn("Task already assigned");

 break;
 default:
 LOG.error("Error when trying to assign task.",
 KeeperException.create(Code.get(rc), path));
 }
 }
};

The Master-Worker Example | 81

www.it-ebooks.info

http://www.it-ebooks.info/

Create an assignment. The path is of the form /assign/worker-id/task-num.
Delete the task znode under /tasks.

For new tasks, after the master selects a worker to assign the task to, it creates a znode
under /assign/worker-id, where id is the identifier of the worker. Next, it deletes the
znode from the list of pending tasks. The code for deleting the znode in the previous
example follows the pattern of earlier code we have shown.

When the master creates an assignment znode for a worker with identifier id, Zoo‐
Keeper generates a notification for the worker, assuming that the worker has a watch
registered upon its assignment znode (/assign/worker-id).

Note that the master also deletes the task znode under /tasks after assigning it suc‐
cessfully. This approach simplifies the role of the master when it receives new tasks to
assign. If the list of tasks mixed the assigned and unassigned tasks, the master would
need a way to disambiguate the tasks.

Worker Waits for New Task Assignments
One of the first steps a worker has to execute is to register itself with ZooKeeper. It does
this by creating a znode under /workers, as we already discussed:

void register() {
 zk.create("/workers/worker-" + serverId,
 new byte[0],
 Ids.OPEN_ACL_UNSAFE,
 CreateMode.EPHEMERAL,
 createWorkerCallback, null);
}

StringCallback createWorkerCallback = new StringCallback() {
 public void processResult(int rc, String path, Object ctx, String name) {
 switch (Code.get(rc)) {
 case CONNECTIONLOSS:
 register();

 break;
 case OK:
 LOG.info("Registered successfully: " + serverId);

 break;
 case NODEEXISTS:
 LOG.warn("Already registered: " + serverId);

 break;
 default:
 LOG.error("Something went wrong: " +
 KeeperException.create(Code.get(rc), path));
 }

82 | Chapter 4: Dealing with State Change

www.it-ebooks.info

http://www.it-ebooks.info/

 }
};

Register the worker by creating a znode.
Try again. Note that registering again is not a problem. If the znode has already
been created, we get a NODEEXISTS event back.

Adding this znode signals to the master that this worker is active and ready to process
tasks. Note that we don’t use here the idle/busy status introduced in Chapter 3 to simplify
the example.

We similarly create a znode /assign/worker-id so that the master can assign tasks to
this worker. If we create /workers/worker-id before /assign/worker-id, we could fall
into the situation in which the master tries to assign the task but cannot because the
assigned parent’s znode has not been created yet. To avoid this situation, we need to
create /assign/worker-id first. Moreover, the worker needs to set a watch on /assign/
worker-id to receive a notification when a new task is assigned.

Once the worker has the list of tasks assigned to it, it fetches the tasks from /assign/
worker-id and executes them. The worker takes each task in its list and verifies whether
it has already queued the task for execution. It keeps a list of ongoing tasks for this
purpose. Note that we loop through the assigned tasks of a worker in a separate thread
to release the callback thread. Otherwise, we would be blocking other incoming call‐
backs. In our example, we use a Java ThreadPoolExecutor to allocate a thread to loop
through the tasks:

Watcher newTaskWatcher = new Watcher() {
 public void process(WatchedEvent e) {
 if(e.getType() == EventType.NodeChildrenChanged) {
 assert new String("/assign/worker-"+ serverId).equals(e.getPath());

 getTasks();
 }
 }
};

void getTasks() {
 zk.getChildren("/assign/worker-" + serverId,
 newTaskWatcher,
 tasksGetChildrenCallback,
 null);
}

ChildrenCallback tasksGetChildrenCallback = new ChildrenCallback() {
 public void processResult(int rc,
 String path,
 Object ctx,
 List<String> children) {

The Master-Worker Example | 83

www.it-ebooks.info

http://www.it-ebooks.info/

 switch(Code.get(rc)) {
 case CONNECTIONLOSS:
 getTasks();
 break;
 case OK:
 if(children != null) {
 executor.execute(new Runnable() {
 List<String> children;
 DataCallback cb;

 public Runnable init (List<String> children,
 DataCallback cb) {
 this.children = children;
 this.cb = cb;

 return this;
 }

 public void run() {
 LOG.info("Looping into tasks");
 synchronized(onGoingTasks) {
 for(String task : children) {
 if(!onGoingTasks.contains(task)) {
 LOG.trace("New task: {}", task);
 zk.getData("/assign/worker-" +
 serverId + "/" + task,
 false,
 cb,
 task);
 onGoingTasks.add(task);
 }
 }
 }
 }
 }
 .init(children, taskDataCallback));
 }
 break;
 default:
 System.out.println("getChildren failed: " +
 KeeperException.create(Code.get(rc), path));
 }
 }
};

Upon receiving a notification that the children have changed, get the list of
children.
Execute in a separate thread.
Loop through the list of children.
Get task data to execute it.

84 | Chapter 4: Dealing with State Change

www.it-ebooks.info

http://www.it-ebooks.info/

Add task to the list of tasks being executed to avoid executing it multiple times.

Session Events and Watchers
When we disconnect from a server (for example, when the server
crashes), no watches are delivered until the connection is reestablish‐
ed. For this reason, session events like CONNECTIONLOSS are sent to all
outstanding watch handlers. In general, applications use session events
to go into a safe mode: the ZooKeeper client does not receive events
while disconnected, so it should act conservatively in this state. In the
case of our toy master-worker application, all actions except submit‐
ting a task are reactive, so if a master or a worker is disconnected, it
simply does not trigger any action. Also, the master-worker client is
not able to submit new tasks and it does not receive status notifica‐
tions while disconnected.

Client Waits for Task Execution Result
Suppose an application client has submitted a task. Now it needs to know when it has
been executed and its status. Recall that once a worker executes a task, it creates a znode
under /status. Let’s first check the code to submit a task for execution:

void submitTask(String task, TaskObject taskCtx) {
 taskCtx.setTask(task);
 zk.create("/tasks/task-",
 task.getBytes(),
 Ids.OPEN_ACL_UNSAFE,
 CreateMode.PERSISTENT_SEQUENTIAL,
 createTaskCallback,
 taskCtx);
}

StringCallback createTaskCallback = new StringCallback() {
 public void processResult(int rc, String path, Object ctx, String name) {
 switch (Code.get(rc)) {
 case CONNECTIONLOSS:
 submitTask(((TaskObject) ctx).getTask(),
 (TaskObject) ctx);

 break;
 case OK:
 LOG.info("My created task name: " + name);
 ((TaskObject) ctx).setTaskName(name);
 watchStatus("/status/" + name.replace("/tasks/", ""),
 ctx);

 break;
 default:

The Master-Worker Example | 85

www.it-ebooks.info

http://www.it-ebooks.info/

 LOG.error("Something went wrong" +
 KeeperException.create(Code.get(rc), path));
 }
 }
};

Unlike previous calls to ZooKeeper, we are passing a context object, which is an
instance of a Task class in our implementation.
Resubmit the task upon a connection loss. Note that resubmitting may create a
duplicate of the task.
Set a watch on the status znode for this task.

Has My Sequential Znode Been Created?
Dealing with a CONNECTIONLOSS event when trying to create a sequen‐
tial znode is somewhat tricky. Because ZooKeeper assigns the sequence
number, it is not possible for the disconnected client to determine
whether the znode has been created when there might be concurrent
requests to create sequential znodes from other clients. (Note that all
the create requests we are talking about in this note refer to the chil‐
dren of the same znode.)
To overcome this limitation, we have to give some hint about the
originator of the znode, like adding the server ID as part of the task
name. Using this approach, it is possible to determine whether the task
has been created by listing all task znodes.

Here we check if the status node already exists (maybe the task has been processed fast)
and set a watch. We provide a watcher implementation to react to the notification of the
znode creation and a callback implementation for the exists call:

ConcurrentHashMap<String, Object> ctxMap =
 new ConcurrentHashMap<String, Object>();

void watchStatus(String path, Object ctx) {
 ctxMap.put(path, ctx);
 zk.exists(path,
 statusWatcher,
 existsCallback,
 ctx);
}

Watcher statusWatcher = new Watcher() {
 public void process(WatchedEvent e) {
 if(e.getType() == EventType.NodeCreated) {
 assert e.getPath().contains("/status/task-");

 zk.getData(e.getPath(),

86 | Chapter 4: Dealing with State Change

www.it-ebooks.info

http://www.it-ebooks.info/

 false,
 getDataCallback,
 ctxMap.get(e.getPath()));
 }
 }
};

StatCallback existsCallback = new StatCallback() {
 public void processResult(int rc, String path, Object ctx, Stat stat) {
 switch (Code.get(rc)) {
 case CONNECTIONLOSS:
 watchStatus(path, ctx);

 break;
 case OK:
 if(stat != null) {
 zk.getData(path, false, getDataCallback, null);
 }

 break;
 case NONODE:
 break;
 default:
 LOG.error("Something went wrong when " +
 "checking if the status node exists: " +
 KeeperException.create(Code.get(rc), path));

 break;
 }
 }
};

The client propagates the context object here so that it can modify the task object
(TaskObject) accordingly when it receives a notification for the status znode.
The status znode is already there, so the client needs to get it.
If the status znode is not there yet, which should typically be the case, the client
does nothing.

An Alternative Way: Multiop
Multiop was not in the original design of ZooKeeper, but was added in version 3.4.0.
Multiop enables the execution of multiple ZooKeeper operations in a block atomically.
The execution is atomic in the sense that either all operations in a multiop block succeed
or all fail. For example, we can delete a parent znode and its child in a multiop block.
The only possible outcomes are that either both operations succeed or both fail. It is not
possible for the parent to be deleted while leaving one of its children around, or vice
versa.

An Alternative Way: Multiop | 87

www.it-ebooks.info

http://www.it-ebooks.info/

To use the multiop feature:

1. Create an Op object to represent each ZooKeeper operation you intend to execute
through a multiop call. ZooKeeper provides an Op implementation for each of the
operations that change state: create, delete, and setData.

2. Within the Op object, call a static method provided by Op for that operation.
3. Add this Op object to an Iterable Java object, such as a list.
4. Call multi on the list.

The following example illustrates this process:

 Op deleteZnode(String z) {
 return Op.delete(z, -1);
 }

 ...

 List<OpResult> results = zk.multi(Arrays.asList(deleteZnode("/a/b"),
 deleteZnode("/a"));

Create an Op object for the delete call.
Return the object by calling the appropriate Op method.
Execute both delete calls as a unit by using the multi call and passing them as
a list of Op instances.

The call to multi returns a list of OpResult objects, each one specialized to the corre‐
sponding operation. For example, for the delete operation we have a DeleteResult
class, which extends OpResult. The methods and data exposed by each result object
depend on the operation type. DeleteResult offers only equals and hashCode methods,
whereas CreateResult exposes the path of the operation and a Stat object. In the
presence of errors, ZooKeeper returns an instance of ErrorResult containing an error
code.

The multi call also has an asynchronous version. Here are the signatures of the syn‐
chronous and asynchronous methods:

public List<OpResult> multi(Iterable<Op> ops) throws InterruptedException,
 KeeperException;
public void multi(Iterable<Op> ops, MultiCallback cb, Object ctx);

Transaction is a wrapper for multi with a simpler interface. We can create an instance
of Transaction, add operations, and commit the transaction. The previous example
rewritten using Transaction looks like this:

Transaction t = new Transaction();
t.delete("/a/b", -1);

88 | Chapter 4: Dealing with State Change

www.it-ebooks.info

http://www.it-ebooks.info/

t.delete("/a", -1);
List<OpResult> results = t.commit();

The commit call also has an asynchronous version that takes as input a MultiCall
back object and a context object:

public void commit(MultiCallback cb, Object ctx);

multiop can simplify our master-worker implementation in at least one place. When
assigning a task, the master in previous examples has created the corresponding as‐
signment znode and then deleted the task znode under /tasks. If the master crashes
before deleting the znode under /tasks, we are left with a task in /tasks that has already
been assigned. Using multiop, we can create the znode representing the assignment of
the task under /assign and delete the znode representing the task under /tasks atom‐
ically. Using this approach, we guarantee that no task znode under /tasks has been
already assigned. If a backup takes over the role of master, it is not necessary to disam‐
biguate the tasks in /tasks: they are all unassigned.

Another feature that multiop offers is the possibility of checking the version of a znode
to enable operations over multiple znodes that read the state of ZooKeeper and write
back some data—possibly a modification of what has been read. The version of the
znode that is checked does not change, so this call enables a multiop that checks the
version of a znode that is not modified. This feature is useful when the changes to one
or more znodes are conditional upon the version of another znode. Say that in our
master-worker example, the master needs to have the clients adding new tasks under a
path that the master specifies. For example, the master could ask clients to create new
tasks as children of /tasks-mid, where mid is the master identifier. The master stores
this path as the data of the /master-path znode. A client that needs to add a new task
first reads /master-path and picks its current version with Stat. Next, the client creates
a new task znode under /tasks-mid as part of the a multiop call, and it also checks that
the version of /master-path matches the one it has read.

The signature of check is similar to that of setData, but it doesn’t include data:

public static Op check(String path, int version);

If the version of the znode in the given path does not match, the multi call fails. To
illustrate, this is roughly how the code would look if we were to implement the example
we have just discussed:

byte[] masterData = zk.getData("/master-path", false, stat);
String parent = new String(masterData);
...

zk.multi(Arrays.asList(Op.check("/master-path", stat.getVersion()),
 Op.create(, modify(z1Data),-1),

Get the data of /master.

An Alternative Way: Multiop | 89

www.it-ebooks.info

http://www.it-ebooks.info/

Extract the path from the /master znode.
multi call with two operations.

Note that if we store the path along with the master ID in /master, this scheme does
not work. The /master znode is created every time by a new master, which makes its
version consistently 1.

Watches as a Replacement for Explicit Cache Management
It is undesirable from the application’s perspective to have clients accessing ZooKeeper
every time they need to get the data for a given znode, the list of children of a znode, or
anything else related to the ZooKeeper state. Instead, it is much more efficient to have
clients cache values locally and use them at will. Once such values change, of course,
you want ZooKeeper to notify the clients so they can update the caches. These notifi‐
cations are the same ones that we have been talking about to this point, and as before,
application clients register to receive such notifications through watches. In short, these
watches enable clients to cache a local version of a value (such as the data of a znode or
its list of children) and to receive notifications when that value changes.

An alternative to the approach that the ZooKeeper designers have adopted would be to
cache transparently on behalf of the client all ZooKeeper state it accesses and to inva‐
lidate the values transparently when there are updates to cached data. Implementing
such a cache coherence scheme could be costly, however, because clients might not need
to cache all ZooKeeper state they access, and servers would need to invalidate cached
state nonetheless. To implement invalidation, servers would have to either keep track
of the cache content for each client or broadcast invalidation requests. Both options are
expensive for a large number of clients and undesirable from our perspective.

Regardless of which party manages the client cache—ZooKeeper directly or the Zoo‐
Keeper application—notifying clients of updates can be performed either synchro‐
nously or asynchronously. Synchronously invalidating state across all clients holding a
copy would be inefficient, because clients often proceed at different paces and conse‐
quently slow clients would force other clients to wait. Such differences become more
frequent as the size of the client population increases.

The notifications approach that the designers opted for can be perceived as an asyn‐
chronous way of invalidating ZooKeeper state on the client side. ZooKeeper queues
notifications to clients, and such notifications are consumed asynchronously. This in‐
validation scheme is also optional; it is up to the application to decide what parts of the
ZooKeeper state require invalidation for any given client. These design choices are a
better match for the use cases of ZooKeeper.

90 | Chapter 4: Dealing with State Change

www.it-ebooks.info

http://www.it-ebooks.info/

Ordering Guarantees
There are a few important observations to keep in mind with respect to ordering when
implementing applications with ZooKeeper.

Order of Writes
ZooKeeper state is replicated across all servers forming the ensemble of an installation.
The servers agree upon the order of state changes and apply them using the same order.
For example, if a ZooKeeper server applies a state change that creates a znode /z followed
by a state change that deletes a znode /z', all servers in the ensemble must also apply
these changes, and in the same order.

Servers, however, do not necessarily apply state updates simultaneously. In fact, they
rarely do. Servers most likely apply state changes at different times because they proceed
at different speeds, even if the hardware they run upon is fairly homogeneous. There
are a number of reasons that could cause this time lag, such as operating system sched‐
uling and background tasks.

Applying state updates at different times is typically not a problem for applications
because they still perceive the same order of updates. Applications may perceive it,
however, if ZooKeeper state is communicated through hidden channels, as we discuss
next.

Order of Reads
ZooKeeper clients always observe the same order of updates, even if they are connected
to different servers. But it is possible for two clients to observe updates at different times.
If they communicate outside ZooKeeper, the difference becomes apparent.

Let’s consider the following situation:

• A client c1 updates the data of a znode /z and receives an acknowledgment.
• Client c1 sends a message through a direct TCP connection to a client c2 saying that

it has changed the state of /z.
• Client c2 reads the state of /z but observes a state previous to the update of c1.

We call this a hidden channel because ZooKeeper doesn’t know about the clients’ extra
communication. Now c2 has stale data. This situation is illustrated in Figure 4-2.

To avoid reading stale data, we advise that applications use ZooKeeper for all commu‐
nication related to the ZooKeeper state. For example, to avoid the situation just de‐
scribed, c2 could set a watch on /z instead of receiving a direct message from c1. With a
watch, c2 learns of the change to /z and eliminates the hidden channel problem.

Ordering Guarantees | 91

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-2. Example of the hidden channel problem

Order of Notifications
ZooKeeper orders notifications with respect to other notifications and asynchronous
replies, respecting the order of updates to the system state. Say that ZooKeeper orders
two state updates u and uʹ , with uʹ following u. If u and uʹ modify znodes /a and /b,
respectively, and a client c has a watch set on /a, c is able to observe the update uʹ only
by, say, reading /b after receiving the notification corresponding to u.

This ordering enables applications to use watches to implement safety properties. Say
that a znode /z is created or deleted to indicate that some configuration stored in Zoo‐
Keeper is invalid. Guaranteeing that clients are notified of the creation or deletion of /z
before any actual change is made to the configuration is important to make sure that
clients won’t read an invalid configuration.

To make it more concrete, say that we have a znode /config that is the parent of a
number of other znodes containing application configuration metadata: /config/
m1, /config/m2, …, /config/m_n_. For the purposes of this example, it doesn’t matter
what the content of the znodes actually is. Say that a master application process needs
to update these nodes by invoking setData on each znode, and it can’t have a client
reading a partial update to these znodes. One solution is to have the master create
a /config/invalid znode before it starts updating the configuration znodes. Other
clients that need to read this state watch /config/invalid and avoid reading it if the

92 | Chapter 4: Dealing with State Change

www.it-ebooks.info

http://www.it-ebooks.info/

invalid znode is present. Once the invalid znode is deleted, meaning that a new valid set
of configuration znodes is available, clients can proceed to read that set.

For this particular example, we could alternatively have used multiop to execute all
setData operations to the /config/m[1-n] znodes atomically instead of using a znode
to mark some state as partially modified. In instances in which atomicity is the problem,
we can use multiop instead of relying upon an extra znode and notifications. The no‐
tification mechanism, however, is more general and is not constrained to atomicity.

Because ZooKeeper orders notifications according to the order of the state updates that
trigger the notifications, clients can rely upon perceiving the true order of ZooKeeper
state changes through their notifications.

Liveness versus Safety
We have used the notifications mechanism extensively for liveness in
this chapter. Liveness is about making sure that the system eventually
makes progress. Notifications of new tasks and new workers are ex‐
amples of events related to liveness. If a master is not notified of a new
task, the task will never be executed. Not executing a submitted task
constitutes absence of liveness, at least from the perspective of the
client that submitted the task.
This last example of atomic updates to a set of configuration znodes is
different: it is about safety, not liveness. Reading the znodes while they
are being updated might lead to a client reading an inconsistent con‐
figuration. The invalid znode makes sure that clients read the state
only when a valid configuration is available.
For the liveness examples we have seen, the order of delivery of noti‐
fications is not particularly important. As long as clients eventually
learn of those events, they will make progress. For safety, however,
receiving a notification out of order might lead to incorrect behavior.

The Herd Effect and the Scalability of Watches
One issue to be aware of is that ZooKeeper triggers all watches set for a particular znode
change when the change occurs. If there are 1,000 clients that have set a watch on a given
znode with a call to exists, then 1,000 notifications will be sent out when the znode is
created. A change to a watched znode might consequently generate a spike of notifica‐
tions. Such a spike could affect, for example, the latency of operations submitted around
the time of the spike. When possible, we recommend avoiding such a use of ZooKeeper
in which a large number of clients watch for a change to a given znode. It is much better
to have only a few clients watching any given znode at a time, and ideally at most one.

The Herd Effect and the Scalability of Watches | 93

www.it-ebooks.info

http://www.it-ebooks.info/

One way around this problem that doesn’t apply in every case but might be useful in
some is the following. Say that n clients are competing to acquire a lock (e.g., a master
lock). To acquire the lock, a process simply tries to create the /lock znode. If the znode
exists, the client watches the znode for deletion. When the znode is deleted, the client
tries again to create /lock. With this strategy, all clients watching /lock receive a noti‐
fication when /lock is deleted. A different approach is to have each client create a
sequential znode /lock/lock-. Recall that ZooKeeper adds a sequence number to the
znode, automatically making it /lock/lock-xxx, where xxx is a sequence number. We
can use the sequence number to determine which client acquires the lock by granting
it to the client that created the znode under /lock with the smallest sequence number.
In this scheme, a client determines if it has the smallest sequence number by getting the
children of /lock with getChildren. If the client doesn’t have the smallest sequence
number, it watches the next znode in the sequence determined by the sequence numbers.
For example, say we have three znodes: /lock/lock-001, /lock/lock-002, and /lock/
lock-003. In this example:

• The client that created /lock/lock-001 has the lock.
• The client that created /lock/lock-002 watches /lock/lock-001.
• The client that created /lock/lock-003 watches /lock/lock-002.

This way each node has at most one client watching it.

Another dimension to be aware of is the state generated with watches on the server side.
Setting a watch creates a Watcher object on the server. According to the YourKit profiler,
setting a watch adds around 250 to 300 bytes to the amount of memory consumed by
the watch manager of a server. Having a very large number of watches implies that the
watch manager consumes a nonnegligible amount of server memory. For example,
having 1 million outstanding watches gives us a ballpark figure of 0.3 GB. Consequently,
a developer must be mindful of the number of watches outstanding at any time.

Takeaway Messages
In a distributed system, there are many events that trigger actions. ZooKeeper provides
efficient mechanisms for keeping track of important events that require processes in the
system to react. Examples we have discussed here are related to the regular flow of
applications (e.g., execution of tasks) or crash faults (e.g., master crashes).

One key ZooKeeper feature that we have used is notifications. ZooKeeper clients register
watches with ZooKeeper to receive notifications upon changes to the ZooKeeper state.
The order of notifications delivered is important; clients must not observe different
orders for the changes to the ZooKeeper state.

94 | Chapter 4: Dealing with State Change

www.it-ebooks.info

http://www.yourkit.com
http://www.it-ebooks.info/

One particular feature that is useful when dealing with changes is the multi call. It
enables multiple operations to be executed in a block and often avoids race conditions
in distributed applications when clients are reacting to events and changing the Zoo‐
Keeper state.

We expect most applications to follow the pattern we present here, although variants
are of course possible and acceptable. We have focused on the asynchronous API be‐
cause we encourage developers to use it. The asynchronous API enables applications to
use ZooKeeper resources more efficiently and to obtain higher performance.

Takeaway Messages | 95

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Dealing with Failure

Life would be so much easier if failures never happened. Of course, without failures,
much of the need for ZooKeeper would also go away. To effectively use ZooKeeper it is
important to understand the kinds of failures that happen and how to handle them.

There are three main places where failures occur: in the ZooKeeper service itself, the
network, and an application process. Recovery depends on finding which one of these
is the locus of the failure, but unfortunately, doing so isn’t always easy.

Imagine the simple configuration shown in Figure 5-1. Just two processes make up the
application, and three servers make up the ZooKeeper service. The processes will con‐
nect to one of the servers at random and so may end up connecting to different servers.
The servers use internal protocols to keep the state in sync across clients and present a
consistent view to clients.

Figure 5-1. Simple distributed application diagram

97

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-2 shows some of the failures that can happen in the various components of the
system. It’s interesting to examine how an application can distinguish between the dif‐
ferent types of failures. For example, if the network is down, how can c1 determine the
difference between a network failure and a ZooKeeper service outage? If ZooKeeper
s1 is the only server that is down, the other ZooKeeper servers will be online, so if there
is no network problem, c1 will be able to connect to one of the other servers. However,
if c1 cannot connect to any of the servers, it may be because the service is unavailable
(perhaps because a majority of the servers are down) or because there is a network
failure.

Figure 5-2. Simple distributed application diagram with failures

This example shows that it isn’t always possible to handle failures based on the compo‐
nent in which they occur, so instead ZooKeeper presents its view of the system and
developers work within that view.

If we examine Figure 5-2 from the perspective of c2, we see that a network failure that
lasts long enough will cause the session between c1 and ZooKeeper to expire. Thus, even
though c1 is actually still alive, ZooKeeper will declare c1 to be dead because c1 cannot
connect to any server. If c1 is watching ephemeral znodes from c1, it will be informed of
the death of c1. So c2 will know for sure that c1 is dead because ZooKeeper will have told
it so, even though in this scenario c1 is still alive.

In this scenario, c1 cannot talk to the ZooKeeper service. It knows it is alive, but it cannot
be sure whether or not ZooKeeper has declared it dead, so it must assume the worst. If
c1 takes an action that a dead process should not take (changing external resources, for
example), it can corrupt the system. If c1 is ever able to reconnect with ZooKeeper and
finds out that its session is no longer active, it needs to make sure to stay consistent with
the rest of the system and terminate or execute restart logic to appear as a new instance
of the process.

98 | Chapter 5: Dealing with Failure

www.it-ebooks.info

http://www.it-ebooks.info/

Second-Guessing ZooKeeper
It may be tempting to second-guess ZooKeeper. It has been done be‐
fore. Unfortunately, the uncertainty problem is fundamental, as we
pointed out in the introduction to this chapter. The second-guesser
may indeed guess correctly when ZooKeeper is wrong, but she may
also guess incorrectly when ZooKeeper is right. System design is sim‐
pler and failures are easier to understand and diagnose if ZooKeeper
is the designated source of truth.

Rather than trying to determine causes of failures, ZooKeeper exposes two classes of
failures: recoverable and unrecoverable. Recoverable failures are transient and should
be considered relatively normal—things happen. Brief network hiccups and server fail‐
ures can cause these kinds of failures. Developers should write their code so that their
applications keep running in spite of these failures.

Unrecoverable failures are much more problematic. These kinds of failures cause the
ZooKeeper handle to become inoperable. The easiest and most common way to deal
with this kind of failure is to exit the application. Examples of causes of this class of
failure are session timeouts, network outages for longer than the session timeout, and
authentication failures.

Recoverable Failures
ZooKeeper presents a consistent state to all of the client processes that are using it. When
a client gets a response from ZooKeeper, the client can be confident that the response
will be consistent with all other responses that it or any other client receives. There are
times when a ZooKeeper client library loses its connection with the ZooKeeper service
and can no longer provide information that it can guarantee to be consistent. When a
ZooKeeper client library finds itself in this situation, it uses the Disconnected event and
the ConnectionLossException to express its lack of knowledge about the state of the
system.

Of course, the ZooKeeper client library vigorously tries to extricate itself from this sit‐
uation. It will continuously try to reconnect to another ZooKeeper server until it is
finally able to reestablish the session. Once the session is reestablished, ZooKeeper will
generate a SyncConnected event and start processing requests. ZooKeeper will also re‐
register any watches that were previously registered and generate watch events for any
changes that happened during the disconnection.

A typical cause of Disconnected events and ConnectionLossExceptions is a ZooKeeper
server failure. Figure 5-3 shows an example of such a failure. In this example a client is
connected to server s2, which is one of two active ZooKeeper servers. When s2 fails, the
client’s Watcher objects will get a Disconnected event and any pending requests will

Recoverable Failures | 99

www.it-ebooks.info

http://www.it-ebooks.info/

return with a ConnectionLossException. The ZooKeeper service itself is fine because
a majority of servers are still active, and the client will quickly reestablish its session
with a new server.

Figure 5-3. Connection loss example

If the client doesn’t have any pending requests, all this will take place with very little
disruption to the client. Apart from a Disconnected event followed by a SyncConnec
ted event, the client will not notice the change. If there are pending requests, however,
the connection loss is much more disruptive.

If the client has a pending request outstanding, such as a create request that it just
submitted, when the connection loss happens the client will get a ConnectionLossEx
ception for synchronous requests and a CONNECTIONLOSS return code for asynchronous
requests. However, the client will not be able to tell from these exceptions or return
codes whether or not the requests were processed. As we have seen, handling the con‐
nection loss complicates the code because the application code must figure out whether
the requests actually completed. One very bad way of dealing with the complication of
handling connection loss is to code for the simple case, then shut everything down and
restart if a ConnectionLossException or CONNECTIONLOSS return code is received. Al‐
though this makes the code simpler, it turns what should be a minor disruption into a
major system event.

To see why, let’s look at a system that is composed of 90 client processes connected to a
ZooKeeper cluster of three servers. If the application is written using this simple but
bad style and one of the ZooKeeper servers fails, 30 client processes will shut down and
restart their sessions with ZooKeeper. To make matters worse, the session shutdown
happens when the client processes are not connected to ZooKeeper, so their sessions

100 | Chapter 5: Dealing with Failure

www.it-ebooks.info

http://www.it-ebooks.info/

will not get explicitly shut down and ZooKeeper will have to detect the failures based
on the session timeouts. The end result is that a third of the application processes restart,
and the restarts may be delayed because the new processes must wait for the locks held
by the old sessions to expire. On the other hand, if the application is written to correctly
handle connection loss, such scenarios will cause very little system disruption.

Developers must keep in mind that while a process is disconnected, it cannot receive
updates from ZooKeeper. Though this may sound obvious, an important state change
that a process may miss is the death of its session. Figure 5-4 shows an example of such
a scenario. Client c1, which happens to be a leader, loses its connection at time t1, but it
doesn’t find out that it has been declared dead until time t4. In the meantime, its session
expires at time t2, and at time t3 another process becomes the leader. From time t2 to
time t4 the old leader does not know that it has been declared dead and another leader
has taken control.

Figure 5-4. Revenge of the living dead

If the developer is not careful, the old leader will continue to act as a leader and may
take actions that conflict with those of the new leader. For this reason, when a process
receives a Disconnected event, the process should suspend actions taken as a leader
until it reconnects. Normally this reconnect happens very quickly.

If the client is disconnected for an extended period of time, the process may choose to
close the session. Of course, if the client is disconnected, closing the session will not
make ZooKeeper close sooner. The ZooKeeper service still waits for the session expi‐
ration time to pass before declaring the session expired.

Recoverable Failures | 101

www.it-ebooks.info

http://www.it-ebooks.info/

Ridiculously Long Delay to Expire
When disconnects do happen, the common case should be a very quick
reconnect to another server, but an extended network outage may
introduce a long delay before a client can reconnect to the ZooKeep‐
er service. Some developers wonder why the ZooKeeper client li‐
brary doesn’t simply decide at some point (perhaps twice the session
timeout) that enough is enough and kill the session itself.
There are two answers to this. First, ZooKeeper leaves this kind of
policy decision up to the developer. Developers can easily implement
such a policy by closing the handle themselves. Second, when a Zoo‐
Keeper ensemble goes down, time freezes. Thus, when the ensemble is
brought back up, session timeouts are restarted. If processes using
ZooKeeper hang in there, they may find out that the long timeout was
due to an extended ensemble failure that has recovered and pick right
up where they left off without any additional startup delay.

The Exists Watch and the Disconnected Event
To make session disconnection and reestablishment a little more seamless, the Zoo‐
Keeper client library will reestablish any existing watches on the new server. When the
client library connects to a ZooKeeper server, it will send the list of outstanding watches
and the last zxid (the last state timestamp) it has seen. The server will go through the
watches and check the modification timestamps of the znodes that correspond to them.
If any watched znodes have a modification timestamp later than the last zxid seen, the
server will trigger the watch.

This logic works perfectly for every ZooKeeper operation except exists. The exists
operation is different from all other operations because it can set a watch on a znode
that does not exist. If we look closely at the watch registration logic in the previous
paragraph, we see that there is a corner case in which we can miss a watch event.

Figure 5-5 illustrates the corner case that causes us to miss the creation event of a watched
znode. In this example, the client is watching for the creation of /event. However, just
as the /event is created by another client, the watching client loses its connection to
ZooKeeper. During this time the other client deletes /event, so when the watching client
reconnects to ZooKeeper and reregisters its watch, the ZooKeeper server no longer has
the /event znode. Thus, when it processes the registered watches and sees the watch
for /event, and sees that there is no node called /event, it simply reregisters the watch,
causing the client to miss the creation event for /event. Because of this corner case, you
should try to avoid watching for the creation event of a znode. If you do watch for a
creation event it should be for a long-lived znode; otherwise, this corner case can bite
you.

102 | Chapter 5: Dealing with Failure

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-5. Notification corner case

Hazards of Automatic Disconnect Handling
There are ZooKeeper wrapper libraries that will automatically handle
connection loss failures for you by simply reissuing commands. In
some cases this is perfectly acceptable, but other cases may result in
errors. For example, if the znode /leader is used to establish leader‐
ship and your process issues a create for /leader that results in a
connection loss, a blind retry of the create will cause the second
create to fail because /leader already exists, so the process will as‐
sume that another process has leadership. Of course, you can recog‐
nize and handle this situation if you are aware of this case and under‐
stand how the wrapper library works. Some libraries are much more
sophisticated, so if you do use one of these libraries, it is good to have
an understanding of ZooKeeper and a strong understanding of the
guarantee that the library is providing you.

Unrecoverable Failures
Occasionally, such bad things happen that a session cannot be recovered and must be
closed. The most common reason for this is that the session expires. Another reason is
that an authenticated session can no longer authenticate itself to the server. In both
cases, ZooKeeper throws away the session state.

The clearest example of this lost state is the ephemeral znodes that get deleted when a
session is closed. Internally, ZooKeeper keeps a less visible state that is also discarded
when a session is closed.

An unrecoverable failure happens when the client fails to provide proper credentials to
authenticate the session, or when it reconnects to an expired session after a Disconnec
ted event. The client library does not determine that a session has failed on its own—

Unrecoverable Failures | 103

www.it-ebooks.info

http://www.it-ebooks.info/

as we saw in Figure 5-4, the old client did not figure out that it was disconnected until
time t4, long after it was declared dead by the rest of the system.

The easiest way to deal with unrecoverable failures is to terminate the process and
restart. This allows the process to come back up and reinitialize its state with a new
session. If the process is going to keep running, it must clear out any internal application
process state associated with the old session and reinitialize with a new one.

Hazards of Automatic Recovery from Unrecoverable Failures
It is tempting to automatically recover from unrecoverable failures by
simply re-creating a new ZooKeeper handle under the covers. In fact,
that is exactly what early ZooKeeper implementations did, but early
users noted that this caused problems. A process that thought it was a
leader could lose its session, but before it could notify its other man‐
agement threads that it was no longer the leader, these threads were
manipulating data using the new handle that should be accessed only
by a leader. By making a one-to-one correspondence between a han‐
dle and a session, ZooKeeper now avoids this problem. There may be
cases where automatic recovery is fine, especially in cases where a client
is only reading data, but it is important that clients making changes to
ZooKeeper data keep in mind the hazards of automatic recovery from
session failures.

Leader Election and External Resources
ZooKeeper presents a consistent view of the system to all of its clients. As long as clients
do all their interactions through ZooKeeper (as our examples have done), ZooKeeper
will keep everything in sync. However, interactions with external devices will not be
fully protected by ZooKeeper. A particularly problematic illustration of this lack of
protection, and one that has often been observed in real settings, happens with over‐
loaded host machines.

When the host machine on which a client process runs gets overloaded, it will start
swapping, thrashing, or otherwise cause large delays in processes as they compete for
overcommitted host resources. This affects the timeliness of interactions with Zoo‐
Keeper. On the one hand, ZooKeeper will not be able to send heartbeats in a timely
manner to ZooKeeper servers, causing ZooKeeper to time out the session. On the other
hand, scheduling of local threads on the host machine can cause unpredictable sched‐
uling: an application thread may believe a session is active and a master lock is held even
though the ZooKeeper thread will signal that the session has timed out when the thread
has a chance to run.

Figure 5-6 shows a problematic issue with this timeline. In this example, the application
uses ZooKeeper to ensure that only one master at a time has exclusive access to an

104 | Chapter 5: Dealing with Failure

www.it-ebooks.info

http://www.it-ebooks.info/

external resource. This is a common method of centralizing management of the resource
to ensure consistency. At the start of the timeline, Client c1 is the master and has exclusive
access to the external resource. Events proceed as follows:

1. At t1, c1 becomes unresponsive due to overload and stops communicating with
ZooKeeper. It has queued up changes to the external resource but has not yet re‐
ceived the CPU cycles to send them.

2. At t2, ZooKeeper declares c1’s session with ZooKeeper dead. At this time it also
deletes all ephemeral nodes associated with c1’s sessions, including the ephemeral
node that it created to become the master.

3. At t3, c2 becomes the master.
4. At t4, c2 changes the state of the external resource.
5. At t5, c1’s overload subsides and it sends its queued changes to the external resource.
6. At t6, c1 is able to reconnect to ZooKeeper, finds out that its session has expired, and

relinquishes mastership. Unfortunately, the damage has been done: at time t5,
changes were made to the external resource, resulting in corruption.

Figure 5-6. Coordinating external resources

Apache HBase, one of the early adopters of ZooKeeper, ran into this problem in the
field. HBase has region servers that manage regions of a database table. The data is stored
on a distributed file system, HDFS, and a region server has exclusive access to the files

Leader Election and External Resources | 105

www.it-ebooks.info

http://www.it-ebooks.info/

that correspond to its region. HBase ensures that only one region server is active at a
time for a particular region by using leader election through ZooKeeper.

The region server is written in Java and has a large memory footprint. When available
memory starts getting low, Java starts periodically running garbage collection to find
memory no longer in use and free it for future allocations. Unfortunately, when col‐
lecting lots of memory, a long stop-the-world garbage collection cycle will occasionally
run, pausing the process for extended periods of time. The HBase community found
that sometimes this stop-the-world time period would be tens of seconds, which would
cause ZooKeeper to consider the region server as dead. When the garbage collection
finished and the region server continued processing, sometimes the first thing it would
do would be to make changes to the distributed file system. This would end up cor‐
rupting data being managed by the new region server that had replaced the region server
that had been given up for dead.

Similar problems can also result because of clock drift. In the HBase situation, time froze
due to system overload. Sometimes with clock drift, time will slow down or even go
backward, giving the client the impression that it is still safely within the timeout period
and therefore still has mastership, even though its session has already expired with
ZooKeeper.

There are a couple of approaches to addressing this problem. One approach is to make
sure that you don’t run into overload and clock drift situations. Careful monitoring of
system load can help detect possibly problematic situations, well-designed multithrea‐
ded applications can avoid inducing overloads, and clock synchronization programs
can keep system clocks in sync.

Another approach is to extend the coordination data provided by ZooKeeper to the
external devices, using a technique called fencing. This is used often in distributed sys‐
tems to ensure exclusive access to a resource.

We will show an example of implementing simple fencing using a fencing token. As
long as a client holds the most recent token, it can access the resource.

When we create a leader znode, we get back a Stat structure. One of the members of
that structure is the czxid, which is the zxid that created the znode. The zxid is a unique,
monotonically increasing sequence number. We can use the czxid as a fencing token.

When we make a request to the external resource, or when we connect to the external
resource, we also supply the fencing token. If the external resource has received a request
or connection with a higher fencing token, our request or connection will be rejected.
This means that once a new master connects to an external resource and starts managing
it, if an old master tries to do anything with the external resource, its requests will fail;
it will be fenced off. Fencing has the nice benefit that it will work reliably even in the
presence of system overload or clock drift.

106 | Chapter 5: Dealing with Failure

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-7 shows how this technique solves the scenario of Figure 5-6. When c1 becomes
the leader at time t1, the creation zxid of the /leader znode is 3 (in reality, the zxid would
be a much larger number). It supplies the creation zxid as the fencing token to connect
with the database. Later, when c1 becomes unresponsive due to overload, ZooKeeper
declares c1 as failed and c2 becomes the new leader at time t2. c2 uses 4 as its fencing token
because the /leader znode it created has a creation zxid of 4. At time t3, c2 starts making
requests to the database using its fencing token. Now when c1’s request arrives at the
database at time t4, it is rejected because its fencing token (3) is lower than the highest-
seen fencing token (4), thus avoiding corruption.

Figure 5-7. Fencing with ZooKeeper

Unfortunately, this fencing scheme requires changes to the protocol between the client
and the resource. There must be room in the protocol to add the zxid, and the external
resource needs a persistent store to track the latest zxid received.

Some external resources, such as some file servers, provide locking to partially address
this problem of fencing. Unfortunately, such locking also has limitations. A leader that
has been swapped out and declared dead by ZooKeeper may still hold a valid lock and
therefore prevent a newly elected leader from acquiring the lock it needs to make pro‐
gress. In such cases, it may be more practical to use the resource lock to determine
leadership and have the leader create the /leader znode for informational purposes.

Leader Election and External Resources | 107

www.it-ebooks.info

http://www.it-ebooks.info/

Takeaway Messages
Failures are a fact of life in any distributed system. ZooKeeper doesn’t make the failures
go away, but it does provide a framework to handle them. To handle failures effectively,
developers that use ZooKeeper need to react to the state change events and failure codes
and exceptions thrown by ZooKeeper. Unfortunately, not all failures are handled in the
same way in all cases. Developers must consider that there are times in the disconnected
state, or when dealing with disconnected exceptions, that the process does not know
what is happening in the rest of the system or even whether its own pending requests
have executed. During periods of disconnection, processes cannot assume that the rest
of the system still believes they are running, and even though the ZooKeeper client
library will reconnect with ZooKeeper servers and reestablish watches, the process must
still validate the results of any pending requests that may or may not have executed.

108 | Chapter 5: Dealing with Failure

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

ZooKeeper Caveat Emptor

The previous chapters discussed how to code with ZooKeeper, implementing some basic
cases as well as a few advanced ones. In this chapter, we focus on some tricky aspects of
ZooKeeper, mostly related to session semantics and ordering. The material covered here
might not affect your development, but it is good to be aware of these issues in case you
come across any of them.

The structure of this chapter is different from the others: we present it as a mix of issues
without a linear flow. Each section is self-contained, so they can be read separately. We
have discussed some tricky issues in earlier chapters, but this chapter puts together some
others that it didn’t make sense to discuss in other places. They are still important issues,
because many developers have stumbled upon them.

Using ACLs
Normally you would expect access control to be described in an administration sec‐
tion. However, in ZooKeeper the developer, rather than the administrator, is usually the
one who manages access control. This is because access rights must be set every time a
znode is created; it does not inherit the access permissions from its parent. Access checks
are also done on a per-znode basis. If a client has access to a znode, it can access it even
if that client cannot access the parent of the znode.

ZooKeeper controls access using access control lists (ACLs). An ACL contains entries
of the form scheme:auth-info, where scheme corresponds to a set of built-in authen‐
tication schemes and auth-info encodes the authentication information in some man‐
ner specific to the scheme. ZooKeeper enforces security by checking the authorization
information submitted by the client process upon access to each znode. If a process has
not supplied authentication information, or if this information does not match what is
needed to execute a request on a znode, the process will receive a permission error.

109

www.it-ebooks.info

http://www.it-ebooks.info/

To add authentication information to a ZooKeeper handle, issue the addAuthInfo call
in the format:

void addAuthInfo(
 String scheme,
 byte auth[]
)

where:
scheme

The scheme used to authenticate.

auth

The authentication information to be sent to the server. The type of this parameter
is byte [], but most of the current schemes take a String, so usually you will
convert the String to a byte [] using String.getBytes().

A process can add authentication information using addAuthInfo at any time. Usually,
it will be called right after the ZooKeeper handle is created. A process can call this
method multiple times to add multiple identities to a ZooKeeper handle.

Built-in Authentication Schemes
ZooKeeper offers four built-in schemes to handle ACLs. One of them we have been
using implicitly through the OPEN_ACL_UNSAFE constant. That ACL uses the world
scheme that just lists anyone as the auth-info. anyone is the only auth-info that can
be used with the world scheme.

Another special built-in scheme used by administrators is the super scheme. This
scheme is never included in any ACL, but it can be used to authenticate to ZooKeeper.
A client that authenticates with super will not be restricted by ACLs of any of the znodes.
“Authentication and Authorization Options” on page 186 has more information about the
super scheme.

We will look at the other two schemes in the following example.

When ZooKeeper starts with an empty tree, there is one starting znode: /. This znode
is open to everyone. Let’s assume that Amy the administrator is setting up the ZooKeeper
service. Amy also creates the /apps znode to be the parent of znodes created for appli‐
cations that will use the service. She wants to lock the service down a bit, so she sets the
ACL for / and /apps to:

digest:amy:Iq0onHjzb4KyxPAp8YWOIC8zzwY=, READ | WRITE | CREATE | DELETE | ADMIN

This ACL has exactly one entry, giving Amy all access rights. Amy has chosen amy as
her user ID.

110 | Chapter 6: ZooKeeper Caveat Emptor

www.it-ebooks.info

http://www.it-ebooks.info/

digest is a built-in scheme whose auth-info has the form userid:passwd_digest
when setting the ACL and userid:password when calling addAuthInfo. The passwd_di
gest is a cryptographic digest of the user’s password. In the example ACL,
Iq0onHjzb4KyxPAp8YWOIC8zzwY= is the passwd_digest, so when Amy called addAu
thInfo, auth would be the byte array corresponding to the string amy:secret.

Amy used DigestAuthenticationProvider as follows to generate a digest for her ac‐
count amy with password secret:

java -cp $ZK_CLASSPATH \
 org.apache.zookeeper.server.auth.DigestAuthenticationProvider amy:secret
....
amy:secret->amy:Iq0onHjzb4KyxPAp8YWOIC8zzwY=

The funny string following amy: is the password digest. This is what we used for the
ACL entry. When Amy authenticates to ZooKeeper, she will use digest amy:secret.
For example, if Amy is using zkCli.sh to connect to ZooKeeper, she can authenticate
using:

[zk: localhost:2181(CONNECTED) 1] addauth digest amy:secret

To avoid writing out the full digests in the following examples, we will simply use XXXXX
as a placeholder for the digest.

Amy wants to set up a subtree for a new application called SuperApp that is being
developed by Dom the Developer, so she creates /apps/SuperApp and sets the ACL to
be:

digest:dom:XXXXX, READ | WRITE | CREATE | DELETE | ADMIN
digest:amy:XXXXX, READ | WRITE | CREATE | DELETE | ADMIN

This ACL is composed of two entries, one for Dom and one for Amy. The entries give
full privileges to clients who can produce the password of either dom or amy.

Note that, according to Dom’s entry in the ACL, he has ADMIN permission to /apps/
SuperApp, which means that Dom can remove Amy’s access to /apps/SuperApp by
changing the ACL to not include her entry. Of course, Amy has access to the super
secret, so she can always access any znode even if Dom removes her access to it.

Dom uses ZooKeeper to store the configuration of his application, so he creates /apps/
SuperApp/config to store the configuration. He then creates the znode using the ACL
that we have used in all of our examples, OPEN_ACL_UNSAFE. Dom thinks that because
access is restricted to /apps and /apps/SuperApp, /apps/SuperApp/config is protect‐
ed. As we will see, we don’t call it UNSAFE for nothing.

Let’s say there is a guest named Gabe who has network access to the ZooKeeper service.
Because of the ACLs, Gabe cannot access /app or /apps/SuperApp. Gabe cannot list the
children of /apps/SuperApp, for example. But perhaps Gabe has an idea that Dom uses

Using ACLs | 111

www.it-ebooks.info

http://www.it-ebooks.info/

ZooKeeper for configuration, and config is a rather obvious name for a configuration
file, so he connects to the ZooKeeper service and calls getData on /apps/SuperApp/
config. Because of the open ACL used on that znode, Gabe can read the file. But it
doesn’t stop there. Gabe can change, delete, and even restrict access to /apps/SuperApp/
config.

Let’s assume that Dom realizes this and changes the ACL of /apps/SuperApp/config
to:

digest:dom:XXXXX, READ | WRITE | CREATE | DELETE | ADMIN

As things progress, Dom gets a new developer, Nico, to help finish SuperApp. Nico
needs access to the SuperApp subtree, so Dom changes the ACL of files in that subtree
to include Nico. The new ACL is:

digest:dom:XXXXX, READ | WRITE | CREATE | DELETE | ADMIN
digest:nico:XXXXX, READ | WRITE | CREATE | DELETE | ADMIN

Where Do Digest Usernames and Passwords Come From?
You may notice that the usernames and passwords that are used with
the digest scheme seem to be appearing from thin air. Actually, that is
exactly where they come from. They don’t need to correspond to any
real system identity. Usernames can also overlap. There may be an‐
other developer named Amy that starts working with Dom and Nico.
Dom can add her into ACLs using amy:XXXXX. The only clash would
be if both Amys happened to choose the same password, because they
would then have access to each other’s files.

Now Dom and Nico will have the access they need to finish working on SuperApp.
When the application goes into production, though, Dom and Nico may not want to
give the secret passwords to the processes that need to access the ZooKeeper data. So
they decide to restrict access to the data based on the network address of the machines
that are running the SuperApp processes. All of the machines are on the 10.11.12.0/24
network. They therefore change the ACL of the znodes in the SuperApp subtree to:

digest:dom:XXXXX, READ | WRITE | CREATE | DELETE | ADMIN
digest:nico:XXXXX, READ | WRITE | CREATE | DELETE | ADMIN
ip:10.11.12.0/24, READ

The ip scheme takes the network address and mask. Because it uses the address of the
client to do the ACL check, clients do not need to call addAuthInfo with the ip scheme
to access a znode using this ACL.

Now any ZooKeeper client that connects from the 10.11.12.0/24 network will have read
access to znodes in the SuperApp subtree. This authentication scheme assumes that IP

112 | Chapter 6: ZooKeeper Caveat Emptor

www.it-ebooks.info

http://www.it-ebooks.info/

addresses cannot be spoofed, which is a rather naive assumption that may not be ap‐
propriate for all environments.

SASL and Kerberos
There are a couple of problems with the example in the previous section. First, if new
developers join or leave the group, an administrator has to change all the ACLs; it would
be nice if we could avoid this by using groups. Second, we also have to change all the
ACLs if we want to change any of the passwords of any of the developers. Finally, neither
the digest nor the ip scheme is appropriate if the network is not trusted. A scheme
called sasl, which ships with ZooKeeper, addresses these issues.

SASL stands for Simple Authentication and Security Layer. It is a framework that ab‐
stracts the underlying system of authentication so that applications that use SASL can
use any of the various protocols supported by SASL. With respect to ZooKeeper, SASL
usually uses Kerberos, which is an authentication protocol that provides the missing
features that we mentioned earlier. SASL uses sasl for its scheme name, and the id is
the Kerberos ID of the client.

SASL is an extended ZooKeeper scheme. That means it needs to be enabled at runtime
with a configuration parameter or Java system property. If you want to add it to the
ZooKeeper configuration file, use the configuration parameter authProvider.XXX. If
you want to use a system property instead, use the zookeeper.authProvider.XXX
property name. In both cases, XXX can be anything as long as there are no other auth
Providers with the same XXX. Usually XXX is a number starting at 0. The value of the
parameter or property is org.apache.zookeeper.server.auth.SASLAuthentication
Provider. This will enable SASL.

Adding New Schemes
Many other possible schemes could be used with ZooKeeper. Making them available is
a “simple matter of coding.” The org.apache.zookeeper.server.auth package offers
an interface called AuthenticationProvider. If you implement your own provider, you
can enable it by putting your new classes in the server’s classpath and creating a Java
system property whose key has the zookeeper.authProvider. prefix and whose value
is the name of the class that implements AuthenticationProvider.

Session Recovery
Suppose your ZooKeeper client crashes and recovers. When it comes back, there are a
couple of issues that the application needs to be aware of. First, the state of ZooKeeper
might not be the same as it was at the time the client crashed. As time elapses, other
clients might have made progress and changed the ZooKeeper state. Consequently, it is

Session Recovery | 113

www.it-ebooks.info

http://www.it-ebooks.info/

recommended that the client not try to persist any cached state that comes from Zoo‐
Keeper, but instead uses ZooKeeper as the “source of truth” for all coordination state.

For example, in our master-worker implementation, if the primary master crashes and
recovers, the ensemble might have failed over in the meantime to a backup master that
has assigned tasks. When the first master recovers, it shouldn’t assume that it is still the
master or that the list of pending assignments hasn’t changed.

The second important issue is that the client operations to ZooKeeper that were pending
at the time the client crashed might have completed. Given that the client crashed before
it received a confirmation, ZooKeeper can’t guarantee that the operations have been
executed successfully. Consequently, upon recovery, a client might need to perform
some cleanup on the ZooKeeper state to complete some operations. For example, if our
master crashes before deleting a pending task that has been assigned, it needs to delete
this task from ZooKeeper in case our master becomes a primary again.

Although the discussion so far has focused on the case where the client crashes, all the
points in this section apply also when the session has simply expired. For a session to
expire, it is not necessary for the client to crash. The session may expire due to network
issues or other issues, such as garbage collection pauses in Java. In the case of session
expiration, the client must take into account that the ZooKeeper state might have
changed and that some of its ZooKeeper requests might not have gone through.

Version Is Reset When Znode Is Re-Created
This might sound like a naive observation, but it is necessary to remember that when a
znode is deleted and re-created, its version number is reset. An application that tries to
make version checks after a znode is re-created might fall into this trap.

Say that a client gets the data of a znode (e.g., /z), changes the data of the znode, and
writes it back under the condition that the version is 1. If the znode is deleted and re-
created while the client is updating the data, the version matches, but it now contains
the wrong data.

Another possible scenario is for changes to a znode to occur by deleting and re-creating
the znode; the znode is never changed with setData but is different nevertheless. In this
case, checking the version gives no clue about changes to the znode. The znode may
change an arbitrary number of times and its version will still be 0.

The sync Call
If clients of an application communicate only by reading and writing to ZooKeeper, the
application shouldn’t worry about sync. sync exists because communication outside
ZooKeeper may lead to a problem often referred to as a hidden channel, explained in
“Ordering Guarantees” on page 91. The idea is that a client cʹ may tell another client c

114 | Chapter 6: ZooKeeper Caveat Emptor

www.it-ebooks.info

http://www.it-ebooks.info/

about some change to the ZooKeeper state through a direct channel (e.g., a TCP con‐
nection between c and cʹ), but when c reads the ZooKeeper state, it doesn’t observe the
change.

This scenario is possible because the server serving a given client might not have pro‐
cessed the change yet. sync is supposed to deal with such situations. sync is an asyn‐
chronous call that a client uses before a read operation. Say that a client wants to read
the znode that it has heard through a direct channel has changed. The client calls
sync, followed by getData:

...
zk.sync(path, voidCb, ctx);
zk.getData(path, watcher, dataCb, ctx);
...

sync takes a path, a void callback implementation, and a context object.
The getData call is the same as before.

The path in the sync call documents the operation it is referring to. Internally, it doesn’t
really matter to ZooKeeper. When the server side handles the sync call, it flushes the
channel between the leader and the follower that is serving the client c that called
sync. Flushing here means that by the time getData returns, it is sure to incorporate
any changes that might have happened by the time c calls sync. In the case of a hidden
channel, the change communicated to c will have happened before the call to sync.
Consequently, when c receives a response from the getData call, it must incorporate
the change communicated directly by cʹ . Note that other changes might have happened
to the same znode in the meantime, so ZooKeeper only guarantees that the change
communicated directly has been incorporated in the response of getData.

There is a caveat to the use of sync, which is fairly technical and deeply entwined with
ZooKeeper internals. (Feel free to skip it.) Because ZooKeeper is supposed to serve reads
fast and scale for read-dominated workloads, the implementation of sync has been
simplified and it doesn’t really traverse the execution pipeline as a regular update op‐
eration, like create, setData, or delete. It simply reaches the leader, and the leader
queues a response back to the follower that sent it. There is a small chance that the leader
thinks that it is the leader l, but doesn’t have support from a quorum any longer because
the quorum now supports a different leader, lʹ . In this case, the leader l might not have
all updates that have been processed, and the sync call might not be able to honor its
guarantee.

The ZooKeeper implementation deals with this issue by making it unlikely that a quo‐
rum of followers will abandon a leader without the leader noticing. It does so by having
the leader time out for any given follower based on the tickTime, while a follower
decides that a leader is gone by receiving a socket exception, which occurs when the

The sync Call | 115

www.it-ebooks.info

http://www.it-ebooks.info/

TCP connection between them drops. The leader times out a follower much sooner
than a TCP connection expiration. However, the corner case for an error is there, even
though it has never been observed to our knowledge.

There have been discussions on the mailing list about changing the server handling of
sync to traverse the pipeline and eliminate this corner case altogether. Currently, the
ZooKeeper implementation relies on reasonable timing assumptions, and consequently
no problem is expected.

Ordering Guarantees
Although ZooKeeper officially guarantees the order of client operations during a ses‐
sion, circumstances outside the control of ZooKeeper can still change the way the order
appears to a client. There are a few guidelines that the developer needs to be aware of
to ensure the expected behavior. We discuss three cases here.

Order in the Presence of Connection Loss
Upon a connection loss event, ZooKeeper cancels pending requests. For synchronous
calls the library throws an exception, while for asynchronous calls the library invokes
the callbacks with a return code indicating a connection loss. The client library won’t
try to resubmit the request once it has indicated to the application that the connection
has been lost, so it’s up to the application to resubmit operations that have been canceled.
Consequently, the application can rely on the client library to issue all the callbacks, but
it cannot rely on ZooKeeper to actually carry out the operation in the event of a con‐
nection loss.

To understand what impact this can have on an application, let’s consider the following
sequence of events:

1. Application submits a request to execute Op1.
2. Client library detects a connection loss and cancels pending request to execute Op1.
3. Client reconnects before the session expires.
4. Application submits a request to execute operation Op2.
5. Op2 is executed successfully.
6. Op1 returns with CONNECTIONLOSS.
7. Application resubmits Op1.

In this case, the application submitted Op1 and Op2 in that order and got Op2 to execute
successfully before Op1. When the application notices the connection loss in the callback
of Op1, it tries to submit that request again. But suppose the client does not successfully
reconnect. A new call to submit Op1 will report connection loss again, and there is a risk

116 | Chapter 6: ZooKeeper Caveat Emptor

www.it-ebooks.info

http://www.it-ebooks.info/

that the application will enter into an unbounded loop of resubmitting the Op1 request
without connecting. To get out of this cycle, the application could set a bound on the
number of attempts, or close the handle if reconnecting takes too long.

In some cases, it might be important to make sure that Op1 is executed successfully
before Op2. If Op2 depends on Op1 in some way, then to avoid having Op2 executing
successfully before Op1, we could simply wait for a successful execution of Op1 before
submitting Op2. This is the approach we have taken in most of our master-worker ex‐
ample code, to guarantee that the requests are executed in order. In general, this ap‐
proach of waiting for the result of Op1 is safe, but it adds a performance penalty because
the application needs to wait for the result of one request to submit the next one, instead
of having them processed concurrently.

What if We Get Rid of CONNECTIONLOSS?
The CONNECTIONLOSS event exists essentially because of the case in
which a request is pending when the client loses the connection. Say
it is a create request. In such cases, the client doesn’t know whether
the request has gone through. The client, however, could ask the serv‐
er to check whether the request has executed successfully. The server
knows what has gone through, due to information cached either in
memory or in its logs, so it is feasible to do it this way. If the commu‐
nity eventually changes ZooKeeper to access this server information
when reconnecting, we will be able to remove the limitation of not
being able to guarantee that a prefix executes successfully because
clients will be able to reexecute pending requests when necessary. Un‐
til then, developers have to live with this limitation and deal with
connection loss events.

Order with the Synchronous API and Multiple Threads
Multithreaded applications are common these days. If you are using the synchronous
API with multiple threads, it is important to pay attention to one ordering issue. A
synchronous ZooKeeper call blocks until it gets a response. If two or more threads
submit synchronous operations to ZooKeeper concurrently, they will each block until
they receive a response. ZooKeeper will deliver the responses in order, but it is possible
that due to thread scheduling, the result of an operation submitted later will be processed
first. If ZooKeeper delivers responses to operations very close to each other in time, you
may observe such a scenario.

If different threads submit operations concurrently, odds are that the operations are not
directly related and can be executed in any order without causing consistency issues.
But if the operations are related, the application client must take the order of submission
into consideration when processing the results.

Ordering Guarantees | 117

www.it-ebooks.info

http://www.it-ebooks.info/

Order When Mixing Synchronous and Asynchronous Calls
Here’s another situation where results may appear to be out of order. Say that you submit
two asynchronous operations, Aop1 and Aop2. It doesn’t matter what the operations are,
only that they are asynchronous. In the callback of Aop1, you make a synchronous call,
Sop1. The synchronous call blocks the dispatch thread of the ZooKeeper client, which
causes the application client to receive the result of Sop1 before receiving the result of
Aop2. Consequently, the application observes the results of Aop1, Sop1, and Aop2 in that
order, which is different from the submission order.

In general, it is not a good idea to mix synchronous and asynchronous calls. There are
a few exceptions—for example, when starting up, you may want to make sure that some
data is in ZooKeeper before proceeding. It is possible to use Java latches and other such
mechanisms in these cases, but one or more synchronous calls might also do the job.

Data and Child Limits
ZooKeeper limits the amount of data transferred for each request to 1MB by default.
This limit bounds the maximum amount of data for any given node and the number of
children any parent znode can have. The choice of 1MB is somewhat arbitrary, in the
sense that there is nothing fundamental in ZooKeeper that prevents it from using a
different value, larger or smaller. A limit exists, however, to keep performance high. A
znode with very large data, for instance, takes a long time to traverse, essentially stalling
the processing pipeline while requests are being executed. The same problem happens
if a client executes getChildren on a znode with a large number of children.

The limits ZooKeeper imposes right now for data size and number of children are al‐
ready quite high, so you should avoid even getting close to these limits. We have enabled
large limits to satisfy the requirements of a broader set of applications. If you have a
special use case and really need different limits, you can change them as described in
“Unsafe Options” on page 186.

Embedding the ZooKeeper Server
Many developers have considered embedding the ZooKeeper server in their applica‐
tions to hide their dependency on ZooKeeper. By “embedding,” we mean instantiating
a ZooKeeper server inside an application. The idea is to make it transparent to the
application user that ZooKeeper is in use. Although the idea sounds really appealing
(who likes extra dependencies, after all?), it is not really recommended. One issue we
have observed with embedding is that if anything goes wrong with ZooKeeper, the user
will start seeing log messages related to ZooKeeper. At that point, its use is not trans‐
parent any longer, and the application developer might not be the right expert to deal
with these problems. Even worse, the availability of the application and ZooKeeper are

118 | Chapter 6: ZooKeeper Caveat Emptor

www.it-ebooks.info

http://www.it-ebooks.info/

now coupled: if one exits, the other exits too. ZooKeeper is often used to provide high
availability, but embedding it in an application effectively eliminates one of its strongest
benefits.

Although we do not recommend embedding ZooKeeper, there is nothing really fun‐
damental that prevents one from doing it. ZooKeeper tests, for example, do it. Conse‐
quently, if you really think you need to follow this path, the ZooKeeper tests are a good
source of ideas for how to do so.

Takeaway Messages
Programming with ZooKeeper can be tricky at times. At a high level, we call the attention
of the reader to order guarantees and the session semantics. They may seem easy to
understand at first, and in a sense they are, but there are important corner cases that
developers need to be aware of. Our goal in this chapter was to provide some guidelines
and cover some of these corner cases.

Takeaway Messages | 119

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

The C Client

Although the Java interface to ZooKeeper is the predominant one, the C ZooKeeper
client binding is also popular among ZooKeeper developers and forms the foundation
for bindings in other languages. This chapter focuses on this binding. To illustrate the
development of ZooKeeper applications with the C API, we’ll reimplement the master
of our master-worker example in C. The general idea is to expose the differences when
compared to the Java API through an example.

The main reference for the C API is the zookeeper.h file in the ZooKeeper distribution,
and the instructions to build the client library are given in the README file of the
project distribution. Alternatively, you can use ant compile-native, which automates it
all. Before going into code snippets, we’ll give a quick summary of how to set up the
development environment to help you get started.

When we build the C client, it produces two libraries: one for multithreaded clients and
the other for single-threaded clients. Most of this chapter assumes the multithreaded
library is being used; we discuss the single-threaded version toward the end of the
chapter, but we encourage the reader to focus on multithreaded implementations.

Setting Up the Development Environment
In the ZooKeeper distribution, we can ship precompiled JAR files that are ready to run
on any platform. To compile natively using C, we need to build the required shared
libraries before we can build our native C ZooKeeper applications. Fortunately, Zoo‐
Keeper has an easy way to build these libraries.

The easiest option to build the ZooKeeper native libraries is to use the ant build tool.
In the directory where you unpacked the ZooKeeper distribution, there is a file called
build.xml. This file has the instructions required for ant to build everything. You will
also need automake, autoconf, and cppunit. These should be available in your host

121

www.it-ebooks.info

http://ant.apache.org
http://www.it-ebooks.info/

distribution if you are using Linux. Cygwin supplies the packages on Windows. On Mac
OS X, you can use an open-source package manager such as Fink, Brew, or MacPorts.

Once all the needed applications are installed, you can build the ZooKeeper libraries
using:

ant compile-native

Once the build finishes you will find libraries that you need to link with in build/c/build/
usr/lib and include files you need in build/c/build/usr/include/zookeeper.

Starting a Session
To do anything with ZooKeeper, we first need a zhandle_t handle. To get a handle, we
call zookeeper_init, which has the following signature:

ZOOAPI zhandle_t *zookeeper_init(const char *host,
 watcher_fn fn,
 int recv_timeout,
 const clientid_t *clientid,
 void *context,
 int flags);

String containing the host addresses of the ZooKeeper servers in the ensemble.
The addresses are host:port pairs, and the pairs are comma-separated.
Watcher function for processing events, defined next in this section.
Session expiration time in milliseconds.
Client ID of a session that has been previously established and that this client is
trying to reconnect to. To obtain the client ID of an established session, we call
zoo_client_id. Specify 0 to start a new session.
Context object that is used with the returned zkhandle_t handle.
There is no current use for this parameter, so it should be set to 0.

The ZOOAPI Definition
ZOOAPI is used to build ZooKeeper on Windows. The possible values
for ZOOAPI are __declspec(dllexport), __declspec(dllimport),
and empty. The keywords __declspec(dllexport) and __de
clspec(dllimport) export and import symbols to and from a DLL,
respectively. If you are not building on Windows, leave ZOOAPI emp‐
ty. In principle, nothing needs to be configured if you are building on
Windows; the distribution configuration should be sufficient.

122 | Chapter 7: The C Client

www.it-ebooks.info

http://www.it-ebooks.info/

The call to zookeeper_init may return before the session establishment actually com‐
pletes. Consequently, the session shouldn’t be considered established until a ZOO_CON
NECTED_STATE event has been received. This event is processed with an implementation
of the watcher function, which has the following signature:

typedef void (*watcher_fn)(zhandle_t *zh,
 int type,
 int state,
 const char *path,
 void *watcherCtx);

ZooKeeper handle that this call to the watcher function refers to.
Type of event: ZOO_CREATED_EVENT, ZOO_DELETED_EVENT, ZOO_CHANGED_EVENT,
ZOO_CHILD_EVENT, or ZOO_SESSION_EVENT.
State of the connection.
Znode path for which the watch is triggered. If the event is a session event, the
path is null.
Context object for the watcher.

Here is an example of how to implement a watcher:

static int connected = 0;
static int expired = 0;

void main_watcher (zhandle_t *zkh,
 int type,
 int state,
 const char *path,
 void* context)
{
 if (type == ZOO_SESSION_EVENT) {
 if (state == ZOO_CONNECTED_STATE) {
 connected = 1;
 } else if (state == ZOO_NOTCONNECTED_STATE) {
 connected = 0;
 } else if (state == ZOO_EXPIRED_SESSION_STATE) {
 expired = 1;
 connected = 0;
 zookeeper_close(zkh);
 }
 }
}

Set connected upon receiving a ZOO_CONNECTED_STATE event.
Set expired (and close the session handle) upon receiving a ZOO_EXPIRED_SES
SION_STATE event.

Starting a Session | 123

www.it-ebooks.info

http://www.it-ebooks.info/

Watch Data Structures
ZooKeeper does not have a way to remove watches so as long as
watches are outstanding. Consequently, it’s important to keep watch
data structures around even if the process no longer cares about the
session, because the completion functions may still get invoked. Java
takes care of this automatically through garbage collection.

To put everything together, this is the init function we have for our master:

static int server_id;

int init (char* hostPort) {
 srand(time(NULL));
 server_id = rand();

 zoo_set_debug_level(ZOO_LOG_LEVEL_INFO);

 zh = zookeeper_init(hostPort,
 main_watcher,
 15000,
 0,
 0,
 0);

 return errno;
}

Sets the server ID.
Sets the log severity level to output.
Call to create a session.

The first two lines set the seed for random number generation and set the identifier of
this master. We use the server_id to identify different masters. (Recall that we can have
one or more backup masters as well as a primary master.) Next, we set the severity level
of the log messages. The implementation of logging is homebrewed (see log.h), and we
have copied from the ZooKeeper distribution (zookeeper_log.h) for convenience. Fi‐
nally, we have the call to zookeeper_init, which makes main_watcher the function that
processes session events.

Bootstrapping the Master
Bootstrapping the master refers to creating a few znodes used in the operation of the
master-worker example and running for primary master. We first create four necessary
znodes:

124 | Chapter 7: The C Client

www.it-ebooks.info

http://www.it-ebooks.info/

void bootstrap() {
 if(!connected) {
 LOG_WARN(("Client not connected to ZooKeeper"));
 return;
 }

 create_parent("/workers", "");
 create_parent("/assign", "");
 create_parent("/tasks", "");
 create_parent("/status", "");
 ...
}

If not yet connected, log that fact and return.
Create four parent znodes: /workers, /assign, /tasks, and /status.

And here’s the corresponding create_parent function:

void create_parent(const char * path,
 const char * value) {
 zoo_acreate(zh,
 path,
 value,
 0,
 &ZOO_OPEN_ACL_UNSAFE,
 0,
 create_parent_completion,
 NULL);

}

Asynchronous call to create a znode. It passes a zhandle_t instance, which is a
global static variable in our implementation.
The path is a parameter of the call of type const char*. The path is used to tie
a client to a subtree of a znode, as described in “Managing Client Connect
Strings” on page 197.
The second parameter of the call is the data to store with the znode. We pass
this data to create_parent just to illustrate that we need to pass it as the
completion data of zoo_create in case we need to retry the operation. In our
example, passing data to create_parent is not strictly necessary because it is
empty in all four cases.
This parameter is the length of the value being stored (the previous parameter).
In this case, we set it to zero.
We don’t care about ACLs in this example, so we just set it to be unsafe.
These parent znodes are persistent and not sequential, so we don’t pass any flags.

Bootstrapping the Master | 125

www.it-ebooks.info

http://www.it-ebooks.info/

Because this is an asynchronous call, we pass a completion function that the
ZooKeeper client calls upon completion of the operation.
The last parameter is the context of this call, but in this particular case, there is
no context to be passed.

Because this is an asynchronous call, we pass a completion function to be called when
the operation completes. The definition of the completion function is:

typedef void
 (*string_completion_t)(int rc,
 const char *value,
 const void *data);

rc is the return code, which appears in all completion functions.
value is the string returned.
data is context data passed by the caller when making an asynchronous call.
Note that the programmer is responsible for freeing any heap space associated
with the data pointer.

For this particular example, we have this implementation:

void create_parent_completion (int rc, const char *value, const void *data) {
 switch (rc) {
 case ZCONNECTIONLOSS:
 create_parent(value, (const char *) data);

 break;

 case ZOK:
 LOG_INFO(("Created parent node", value));

 break;

 case ZNODEEXISTS:
 LOG_WARN(("Node already exists"));

 break;

 default:
 LOG_ERROR(("Something went wrong when running for master"));

 break;
 }
}

Check the return code to determine what to do.
Try again in the case of connection loss.

126 | Chapter 7: The C Client

www.it-ebooks.info

http://www.it-ebooks.info/

Most of the completion function consists simply of logging to inform us of what is going
on. In general, completion functions are a bit more complex, although it is good practice
to split functionality across different completion methods as we do in this example. Note
that if a connection is lost, this code ends up calling create_parent multiple times. This
is not a recursive call because the completion function is not called by create_parent.
Also, create_parent simply calls a ZooKeeper function, so it has no side effects that
would come, for example, from allocating memory space. If we do create side effects, it
is important to clean up before making another call from the completion function.

The next task is to run for master. Running for master basically involves trying to create
the /master znode to lock in the primary master role. There are a few differences from
the asynchronous create call we just discussed for parent znodes, though:

void run_for_master() {
 if(!connected) {
 LOG_WARN(LOGCALLBACK(zh),
 "Client not connected to ZooKeeper");
 return;
 }

 char server_id_string[9];
 snprintf(server_id_string, 9, "%x", server_id);
 zoo_acreate(zh,
 "/master",
 (const char *) server_id_string,
 sizeof(int),
 &ZOO_OPEN_ACL_UNSAFE,
 ZOO_EPHEMERAL,
 master_create_completion,
 NULL);
}

Store the server identifier in the /master znode.
We have to pass the length of the data being stored. It is an int, as we have
declared here.
This znode is ephemeral, so we have to pass the ephemeral flag.

The completion function also has to do a bit more than the earlier one:

void master_create_completion (int rc, const char *value, const void *data) {
 switch (rc) {
 case ZCONNECTIONLOSS:
 check_master();

 break;

 case ZOK:
 take_leadership();

Bootstrapping the Master | 127

www.it-ebooks.info

http://www.it-ebooks.info/

 break;

 case ZNODEEXISTS:
 master_exists();

 break;

 default:
 LOG_ERROR(LOGCALLBACK(zh),
 "Something went wrong when running for master.");

 break;
 }
}

Upon connection loss, check whether a master znode has been created by this
master or some other master.
If we have been able to create it, then take leadership.
If the master znode already exists (someone else has taken the lock), run a
function to watch for the later disappearance of the znode.

If this master finds that /master already exists, it proceeds to set a watch with a call to
zoo_awexists:

void master_exists() {
 zoo_awexists(zh,
 "/master",
 master_exists_watcher,
 NULL,
 master_exists_completion,
 NULL);
}

Defines the watcher for /master.
Callback for this exists call.

Note that this call allows us to pass a context to the watcher function as well. Although
we do not make use of it in this case, the watcher function allows us to pass a (void *)
to some structure or variable that represents the context of this call.

Our implementation of the watcher function that processes the notification when the
znode is deleted is the following:

void master_exists_watcher (zhandle_t *zh,
 int type,
 int state,
 const char *path,
 void *watcherCtx) {
 if(type == ZOO_DELETED_EVENT) {

128 | Chapter 7: The C Client

www.it-ebooks.info

http://www.it-ebooks.info/

 assert(!strcmp(path, "/master"));
 run_for_master();
 } else {
 LOG_DEBUG(LOGCALLBACK(zh),
 "Watched event: ", type2string(type));
 }
}

If /master gets deleted, run for master.

Back to the master_exists call. The completion function we implement is simple and
follows the pattern we have been using thus far. The one small important detail to note
is that between the execution of the call to create /master and the execution of the
exists request, it is possible that the /master znode has been deleted (i.e., that the
previous primary master has gone away). Consequently, the completion function veri‐
fies that the znode exists and, if it does not, the client runs for master again:

void master_exists_completion (int rc,
 const struct Stat *stat,
 const void *data) {
 switch (rc) {
 case ZCONNECTIONLOSS:
 case ZOPERATIONTIMEOUT:
 master_exists();

 break;

 case ZOK:
 if(stat == NULL) {
 LOG_INFO(LOGCALLBACK(zh),
 "Previous master is gone, running for master");
 run_for_master();
 }

 break;

 default:
 LOG_WARN(LOGCALLBACK(zh),
 "Something went wrong when executing exists: ",
 rc2string(rc));

 break;
 }
}

Checks whether the znode exists by checking whether stat is null.
Runs for master again if the znode is gone.

Once the master determines it is the primary, it takes leadership, as we explain next.

Bootstrapping the Master | 129

www.it-ebooks.info

http://www.it-ebooks.info/

Taking Leadership
Once the master is elected primary, it starts exercising its role. It first gets the list of
available workers:

void take_leadership() {
 get_workers();
}

void get_workers() {
 zoo_awget_children(zh,
 "/workers",
 workers_watcher,
 NULL,
 workers_completion,
 NULL);
}

Sets a watch to run in case the list of workers changes.
Defines the completion function to be called upon return.

Our implementation caches the list of workers it read last. Upon reading a new list, it
replaces the old list. All this happens in the completion function of the zoo_awget_chil
dren call:

void workers_completion (int rc,
 const struct String_vector *strings,
 const void *data) {
 switch (rc) {
 case ZCONNECTIONLOSS:
 case ZOPERATIONTIMEOUT:
 get_workers();

 break;

 case ZOK:
 struct String_vector *tmp_workers =
 removed_and_set(strings, &workers);
 free_vector(tmp_workers);
 get_tasks();

 break;

 default:
 LOG_ERROR(LOGCALLBACK(zh),
 "Something went wrong when checking workers: %s",
 rc2string(rc));

 break;
 }
}

130 | Chapter 7: The C Client

www.it-ebooks.info

http://www.it-ebooks.info/

Updates the list of workers.
We are not really using the list of workers that have been removed in this
example, so just free it. The idea is to use it for reassignments, though. Consider
doing this as an exercise.
The next step is getting tasks to be assigned.

To get tasks, the server gets the children of /tasks and takes the ones that have been
introduced since the last time the list was read. We need to take the difference because
otherwise the master might end up assigning the same task twice (assigning twice is
possible if we take the list of tasks as is because two consecutive reads of the children
of /tasks might return some duplicate elements—for example, if the master does not
have enough time to process all elements of the first read):

void get_tasks () {
 zoo_awget_children(zh,
 "/tasks",
 tasks_watcher,
 NULL,
 tasks_completion,
 NULL);
}

void tasks_watcher (zhandle_t *zh,
 int type,
 int state,
 const char *path,
 void *watcherCtx) {
 if(type == ZOO_CHILD_EVENT) {
 assert(!strcmp(path, "/tasks"));

 get_tasks();
 } else {
 LOG_INFO(LOGCALLBACK(zh),
 "Watched event: ",
 type2string(type));
 }
}

void tasks_completion (int rc,
 const struct String_vector *strings,
 const void *data) {
 switch (rc) {
 case ZCONNECTIONLOSS:
 case ZOPERATIONTIMEOUT:
 get_tasks();

 break;

 case ZOK:

Taking Leadership | 131

www.it-ebooks.info

http://www.it-ebooks.info/

 LOG_DEBUG(LOGCALLBACK(zh), "Assigning tasks");

 struct String_vector *tmp_tasks = added_and_set(strings, &tasks);
 assign_tasks(tmp_tasks);
 free_vector(tmp_tasks);

 break;
 default:
 LOG_ERROR(LOGCALLBACK(zh),
 "Something went wrong when checking tasks: %s",
 rc2string(rc));

 break;
 }
}

If the list of tasks changes, get the tasks again.
Assign only the tasks that are not being assigned already.

Assigning Tasks
Assigning a task consists of getting the task data, choosing a worker, assigning the task
by adding a znode to the list of tasks of the worker, and finally deleting the task from
the /tasks znode. These actions are essentially what the following code snippets im‐
plement. Getting the task data, assigning the task, and deleting the task are all asyn‐
chronous operations and require completion functions. We begin as follows:

void assign_tasks(const struct String_vector *strings) {
 int i;
 for(i = 0; i < strings->count; i++) {
 get_task_data(strings->data[i]);
 }
}

void get_task_data(const char *task) {
 if(task == NULL) return;

 char * tmp_task = strndup(task, 15);
 char * path = make_path(2, "/tasks/", tmp_task);

 zoo_aget(zh,
 path,
 0,
 get_task_data_completion,
 (const void *) tmp_task);
 free(path);
}

struct task_info {
 char* name;

132 | Chapter 7: The C Client

www.it-ebooks.info

http://www.it-ebooks.info/

 char *value;
 int value_len;
 char* worker;
};

void get_task_data_completion(int rc, const char *value, int value_len,
 const struct Stat *stat, const void *data) {
 int worker_index;

 switch (rc) {
 case ZCONNECTIONLOSS:
 case ZOPERATIONTIMEOUT:
 get_task_data((const char *) data);

 break;

 case ZOK:
 if(workers != NULL) {
 worker_index = (rand() % workers->count);
 struct task_info *new_task;
 new_task = (struct task_info*) malloc(sizeof(struct task_info));

 new_task->name = (char *) data;
 new_task->value = strndup(value, value_len);
 new_task->value_len = value_len;

 const char * worker_string = workers->data[worker_index];
 new_task->worker = strdup(worker_string);

 task_assignment(new_task);
 }

 break;

 default:
 LOG_ERROR(LOGCALLBACK(zh),
 "Something went wrong when checking the master lock: %s",
 rc2string(rc));

 break;

 }
}

For each task, we first get its data.
Asynchronous call to get task data.
Structure to keep the task context.
Choose worker at random to assign the task to.
Create a new task_info instance to store the task data.

Assigning Tasks | 133

www.it-ebooks.info

http://www.it-ebooks.info/

Got task data, so let’s complete the assignment.

So far, the code has read the data of the task and selected a worker. The next step is to
create the znode to represent the assignment:

void task_assignment(struct task_info *task) {
 char* path = make_path(4, "/assign/" , task->worker, "/", task->name);
 zoo_acreate(zh,
 path,
 task->value,
 task->value_len,
 &ZOO_OPEN_ACL_UNSAFE,
 0,
 task_assignment_completion,
 (const void*) task);
 free(path);
}

void task_assignment_completion (int rc, const char *value, const void *data) {
 switch (rc) {
 case ZCONNECTIONLOSS:
 case ZOPERATIONTIMEOUT:
 task_assignment((struct task_info*) data);

 break;

 case ZOK:
 if(data != NULL) {
 char * del_path = "";
 del_path = make_path(2, "/tasks/",
 ((struct task_info*) data)->name);
 if(del_path != NULL) {
 delete_pending_task(del_path);
 }
 free(del_path);
 free_task_info((struct task_info*) data);
 }

 break;

 case ZNODEEXISTS:
 LOG_DEBUG(LOGCALLBACK(zh),
 "Assignment has alreasy been created: %s",
 value);

 break;

 default:

 LOG_ERROR(LOGCALLBACK(zh),
 "Something went wrong when checking the master lock: %s",
 rc2string(rc));

134 | Chapter 7: The C Client

www.it-ebooks.info

http://www.it-ebooks.info/

 break;
 }
}

Create the znode representing the task assignment.
Once the task has been assigned, the master deletes the task from the list of
unassigned tasks.
We have allocated space in the heap for the task_info instance, so we can now
free it.

The final step is to delete the task from /tasks. Recall that the tasks that haven’t been
assigned are kept in /tasks:

void delete_pending_task (const char * path) {
 if(path == NULL) return;

 char * tmp_path = strdup(path);
 zoo_adelete(zh,
 tmp_path,
 -1,
 delete_task_completion,
 (const void*) tmp_path);
}

void delete_task_completion(int rc, const void *data) {
 switch (rc) {
 case ZCONNECTIONLOSS:
 case ZOPERATIONTIMEOUT:
 delete_pending_task((const char *) data);

 break;

 case ZOK:
 free((char *) data);
 break;

 default:
 LOG_ERROR(LOGCALLBACK(zh),
 "Something went wrong when deleting task: %s",
 rc2string(rc));

 break;
 }
}

Asynchronously delete the task.

Assigning Tasks | 135

www.it-ebooks.info

http://www.it-ebooks.info/

There isn’t much to do after the task is successfully deleted. Here, we just free
the space we allocated previously to the path string.

Single-Threaded versus Multithreaded Clients
The ZooKeeper distribution has two options for the C binding: multithreaded and
single-threaded. The multithreaded version is the version we encourage developers to
use, whereas the single-threaded version exists mainly for historical reasons. Back at
Yahoo!, there were applications that used to run on BSD and were single-threaded. They
needed a single-threaded version of the client library to be able to use ZooKeeper. If
you’re not in a situation that forces the use of the single-threaded library, then just go
with the multithreaded library.

To use the single-threaded version, we can reuse the code shown throughout this chap‐
ter, but we need to additionally implement an event loop. For our example, it looks like
this:

int initialized = 0;
int run = 0;
fd_set rfds, wfds, efds;

FD_ZERO(&rfds);
FD_ZERO(&wfds);
FD_ZERO(&efds);
while (!is_expired()) {
 int fd;
 int interest;
 int events;
 struct timeval tv;
 int rc;

 zookeeper_interest(zh, &fd, &interest, &tv);
 if (fd != -1) {
 if (interest&ZOOKEEPER_READ) {
 FD_SET(fd, &rfds);
 } else {
 FD_CLR(fd, &rfds);
 }
 if (interest&ZOOKEEPER_WRITE) {
 FD_SET(fd, &wfds);
 } else {
 FD_CLR(fd, &wfds);
 }
 } else {
 fd = 0;
 }

 /*
 * Master call to get a ZooKeeper handle.

136 | Chapter 7: The C Client

www.it-ebooks.info

http://www.it-ebooks.info/

 */
 if(!initialized) {
 if(init(argv[1])) {
 LOG_ERROR(("Error while initializing the master: ", errno));
 }
 initialized = 1;

 }

 /*
 * The next if block contains
 * calls to bootstrap the master
 * and run for master. We only
 * get into it when the client
 * has established a session and
 * is_connected is true.
 */
 if(is_connected() && !run) {
 LOG_INFO(("Connected, going to bootstrap and run for master"));

 /*
 * Create parent znodes
 */
 bootstrap();

 /*
 * Run for master
 */
 run_for_master();

 run =1;
 }

 rc = select(fd+1, &rfds, &wfds, &efds, &tv);
 events = 0;
 if (rc > 0) {
 if (FD_ISSET(fd, &rfds)) {
 events |= ZOOKEEPER_READ;
 }
 if (FD_ISSET(fd, &wfds)) {
 events |= ZOOKEEPER_WRITE;
 }
 }

 zookeeper_process(zh, events);
}

Return the events this client is interested in.
Add ZOOKEEPER_READ events to the set of interests.
Add ZOOKEEPER_WRITE events to the set of interests.

Single-Threaded versus Multithreaded Clients | 137

www.it-ebooks.info

http://www.it-ebooks.info/

Here we start application calls. This is the same init call shown in “Starting a
Session” on page 122 to get a ZooKeeper handle.
This runs after the master connects to a ZooKeeper server and receives a
ZOO_CONNECTED_EVENT. This block bootstraps and runs for master.
Use the select call to wait for new events.
Indicates that a read event on the file descriptor fd has happened.
Indicates that a write event on the file descriptor fd has happened.
Processes pending ZooKeeper events. zookeeper_process is the same call that
the multithreaded library uses to process watch events and completions. In the
single-threaded case, we have to do it ourselves.

This event loop takes care of the relevant ZooKeeper events, such as callbacks and ses‐
sion events.

To use the multithreaded version, compile the client application with -l zookeep
er_mt and define THREADED with the -DTHREADED option. The code uses the THREADED
directive to indicate the part of the code in the main call that is to be executed when it
is compiled with the multithreaded library. To use the single-threaded version, compile
the program with -l zookeeper_st and without the -DTHREADED option. Generate the
library you want to use by following the compilation procedure detailed in the Zoo‐
Keeper distribution.

Blocking Callbacks
If a callback blocks the thread (while it is doing disk I/O, for exam‐
ple), the sessions may time out because the ZooKeeper processing
loops do not get the CPU time they need to do processing. This same
problem does not occur with the multithreaded library because it uses
separate threads for handling I/O and for completion calls.

Takeaway Messages
The C ZooKeeper binding is very popular, and in this chapter we have explored how to
develop a ZooKeeper application with it. The flow of the application is not very different
from what we have already seen for the Java binding, and the key differences stem mainly
from the differences between the languages. For example, here we had to deal with heap
management, whereas in Java we pretty much delegate it to the JVM. We also pointed
out that ZooKeeper provides the option of implementing multithreaded and single-
threaded applications. We strongly encourage developers to go with the multithreaded
option, but we do show how to make it single-threaded because this option comes with
the distribution.

138 | Chapter 7: The C Client

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Curator: A High-Level API for ZooKeeper

At a high level, Curator is a set of libraries that build on top of ZooKeeper. One of the
core goals of Curator is to manage the ZooKeeper handle for you, removing some (ide‐
ally all) of the complexity that connection management entails. Connection manage‐
ment is often tricky, as we have discussed in the past chapters, and Curator might come
in handy at times.

As part of managing the handle, Curator implements a set of recipes that developers
commonly use, incorporating best practices and known edge-case handling. For ex‐
ample, Curator implements recipes for primitives such as locks, barriers, and caches.
For ZooKeeper operations like create, delete, getData, etc., it streamlines program‐
ming by allowing us to chain calls, a programming style often called fluent. It also pro‐
vides namespaces, automatic reconnection, and other facilities that make applications
more robust.

The Curator components were originally implemented and contributed by Netflix, and
it has recently been promoted to a top-level project of the Apache Software Foundation.

In this chapter, we cover the implementation of the master in our example using Curator
features. Our goal is not to provide a detailed and extensive discussion of Curator, but
simply to introduce it and highlight some of the features that are convenient to use with
a ZooKeeper application. Check the project page for an extensive list of its features.

The Curator Client
Just as with ZooKeeper, before doing anything with Curator, we need to create a cli‐
ent. The client is typically an instance of CuratorFramework that we obtain by calling
the Curator framework factory:

CuratorFramework zkc =
 CuratorFrameworkFactory.newClient(connectString, retryPolicy);

139

www.it-ebooks.info

http://bit.ly/1grgTNU
http://www.it-ebooks.info/

The connectString input parameter is the list of ZooKeeper servers we can connect to,
just like when creating a ZooKeeper client. The retryPolicy parameter is a new feature
of Curator. It enables the developer to specify a policy for retrying operations in the
event of disconnections. Recall that with the regular ZooKeeper interface, we typically
resubmit operations upon a connection loss event.

Our example instantiates the CuratorFramework client. There are oth‐
er methods in the factory class to create an instance, but we don’t cover
them here. One is the CuratorZooKeeperClient class, which pro‐
vides some additional functionality on top of the ZooKeeper client,
such as enabling operations that are safe in the face of unanticipated
disconnections. Unlike the CuratorFramework class, operations on a
CuratorZooKeeperClient are executed directly against the ZooKeep‐
er client handle.

Fluent API
A fluent API enables us to write code by chaining calls instead of relying upon a rigid
signature scheme for invoking an operation. For example, with the standard ZooKeeper
API, we create a znode synchronously by invoking something like:

zk.create("/mypath",
 new byte[0],
 ZooDefs.Ids.OPEN_ACL_UNSAFE,
 CreateMode.PERSISTENT);

With the fluent API of Curator, we make the same call this way:

zkc.create().withMode(CreateMode.PERSISTENT).forPath("/mypath", new byte[0]);

The create call returns a CreateBuilder instance and the subsequent calls return an
object of a type that CreateBuilder extends. For example, CreateBuilder extends
CreateModable<ACLBackgroundPathAndBytesable<String>>, and withMode is de‐
clared in the generic CreateModable<T> interface. Builders are available for the other
operations as well—delete, setData, getData, checkExists, and getChildren—
through the Curator framework client object.

To execute the same operation asynchronously, we add inBackground as follows:

zkc.create().inBackground().withMode(CreateMode.PERSISTENT).forPath("/mypath",
 new byte[0]);

140 | Chapter 8: Curator: A High-Level API for ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

This returns immediately, and we have to create one or more listeners to receive the
callback that is returned when the znode is created. We discuss listeners and how to
register them in the next section.

There are a few different ways to implement the callback for an asynchronous call. If
we issue the previous string of calls, the callback is delivered in the form of a CREATE
event to registered listeners. The inBackground call optionally takes a context object, a
concrete callback implementation to invoke, and even an executor (java.util.concur
rent.Executor) to execute the callback. In Java, an executor is an object that executes
runnable objects; we can use it here to decouple the execution of the callback from the
callback thread of the ZooKeeper client. Using an executor is usually better than creating
one new thread for each task.

To set a watch, we simply add watched to the call chain. For example:

zkc.getData().inBackground().watched().forPath("/mypath");

The notification triggered by the watcher is processed through listeners as well, and they
are passed as a WATCHED event to a given listener. It is also possible to replace watched
with a call to usingWatcher, which takes a regular ZooKeeper Watcher object and calls
it when it receives the notification. A third option is to pass a CuratorWatcher object.
The process method of CuratorWatcher, unlike from a ZooKeeper Watcher, might
throw an exception.

Listeners
Listeners process events that the Curator library generates. To exercise this mechanism,
the application implements one or more listeners and registers them with the Curator
framework client. Events are delivered to all registered listeners.

The listener mechanism is generic and can be used for all manner of events that happen
asynchronously. As we discussed in the previous section, Curator uses listeners to pro‐
cess callbacks and watch notifications. The mechanism also can be used to handle the
exceptions generated by background tasks.

Let’s have a look at how to implement a listener that processes all callbacks and watch
notifications for our master Curator example. The first step is to implement the template
for a CuratorListener:

CuratorListener masterListener = new CuratorListener() {
 public void eventReceived(CuratorFramework client, CuratorEvent event) {
 try {
 switch (event.getType()) {
 case CHILDREN:
 ...

 break;

Listeners | 141

www.it-ebooks.info

http://www.it-ebooks.info/

 case CREATE:
 ...

 break;
 case DELETE:
 ...

 break;
 case WATCHED:
 ...

 break;
 }
 } catch (Exception e) {
 LOG.error("Exception while processing event.", e);
 try {
 close();
 } catch (IOException ioe) {
 LOG.error("IOException while closing.", ioe);
 }
 }
 };

Because the goal here is just to illustrate the structure that we need to implement, we
have omitted the code detail for each of the cases. Check the code examples that come
with this book for more detail.

We next need to register the listener. For this we need a framework client, which we can
create just like the first client we created:

client = CuratorFrameworkFactory.newClient(hostPort, retryPolicy);

Once we have the framework client, we register the listener as follows:

client.getCuratorListenable().addListener(masterListener);

A special kind of listener deals with errors reported when a background thread catches
an exception. This is a low-level detail, but it might be necessary if you want to handle
them in your application. When the application needs to deal with such errors, it must
implement a different kind of listener:

UnhandledErrorListener errorsListener = new UnhandledErrorListener() {
 public void unhandledError(String message, Throwable e) {
 LOG.error("Unrecoverable error: " + message, e);
 try {
 close();
 } catch (IOException ioe) {
 LOG.warn("Exception when closing.", ioe);
 }
 }
};

and register it with the listener client as follows:

142 | Chapter 8: Curator: A High-Level API for ZooKeeper

www.it-ebooks.info

https://github.com/fpj/zookeeper-book-example
https://github.com/fpj/zookeeper-book-example
http://www.it-ebooks.info/

client.getUnhandledErrorListenable().addListener(errorsListener);

Note that implementing listeners as event handlers, as we discussed in this section, is
somewhat different from the way we proposed to implement ZooKeeper applications
in previous chapters. For the master-worker example implemented directly on top of
ZooKeeper (see “A Common Pattern” on page 72), we chain calls and callbacks, and
each callback is handled by a different callback implementation. The callback imple‐
mentations even have different types. With Curator, the details of a callback or a watch
notification are encapsulated into an Event object, which makes it amenable to an im‐
plementation using a single event handler.

State Changes in Curator
Curator exposes a different set of states than ZooKeeper. It has, for example, a SUSPEND
ED state, and it uses LOST to represent session expiration. The state machine for the
connection states is illustrated in Figure 8-1. When dealing with state changes, our
recommendation is in general to halt all operations of the master because we do not
know if the ZooKeeper client will be able to reconnect before the session expires, and
even if it does, the client might not be the primary master any more. It is safer to play
conservatively in the case of a disconnection.

Figure 8-1. Curator connection state machine

There is an additional READ_ONLY state, which is not relevant for our example case. A
connection goes into read-only mode if the ZooKeeper ensemble has read-only mode
enabled and the server the client is connected to goes into read-only mode. As the server
transitions to read-only mode, it cannot form a quorum with other servers because it
is partitioned away. While the connection is in read-only mode, the client will miss any
update that goes through. Such updates are possible if there is a subset of the ensemble
that is able to form a quorum and that receives requests from the client to update the
ZooKeeper state. A partition can last for arbitrarily long (it is out of the control of
ZooKeeper) and consequently the number of updates it might miss is unbounded.
Missing updates could lead to incorrect behavior of the application, so we strongly
recommend thinking carefully about the consequences before enabling it. Note that the

State Changes in Curator | 143

www.it-ebooks.info

http://www.it-ebooks.info/

ability of going into read-only mode is not exclusive of Curator; ZooKeeper enables
such an option (see Chapter 10).

A Couple of Edge Cases
There are a couple of interesting error scenarios that Curator handles nicely. The first
one has to do with the presence of errors during the creation of sequential znodes, and
the second one with errors when deleting a znode:
Sequential znodes

If the server the client is connected to crashes before returning the znode name
(with the sequence number) or the client simply disconnects, then the client doesn’t
get a response even if the operation has been executed. As a consequence, the client
doesn’t know the path to the znode it created. Recall that we use sequential znodes,
for example, in recipes that establish an order for participating clients. To address
this problem, CreateBuilder provides a withProtection call that tells the Curator
client to prefix the sequential znode with a unique identifier. If the create fails, the
client retries the operation, and as part of retrying it verifies whether there is already
a znode with the unique identifier.

Guaranteed deletes
A similar situation occurs with delete operations. If the client disconnects from
the server while executing a delete operation, it doesn’t know whether the de
lete operation has succeeded or not. If the presence of the znode being deleted
indicates, for example, that a resource is locked, it is important to delete the znode
to make sure that the resource is free to be used again. The Curator client provides
a call that enables an application to make the execution of a delete operation guar‐
anteed. The operation is guaranteed in the sense that the Curator client reexecutes
the operation until it succeeds, and for as long as the Curator client instance is valid.
To use this feature, the DeleteBuilder interface defines a guaranteed call.

Recipes
Curator provides a variety of recipes, and we encourage you to have a look at the ex‐
tensive list of available recipes implemented. Here we discuss three recipes that we have
used in the implementation of the Curator master: LeaderLatch, LeaderSelector, and
PathChildrenCache.

Leader Latch
We can use the leader latch primitive to elect a master in our application. First, we need
a LeaderLatch instance:

leaderLatch = new LeaderLatch(client, "/master", myId);

144 | Chapter 8: Curator: A High-Level API for ZooKeeper

www.it-ebooks.info

http://bit.ly/1dNppmK
http://www.it-ebooks.info/

The constructor of LeaderLatch takes a Curator framework client, a ZooKeeper path
for this leadership group, and an identifier for this master. To enable callbacks when
this Curator client acquires or loses leadership, we need to register an implementation
of the LeaderLatchListener interface. This interface has two methods: isLeader and
notLeader. This is what our isLeader implementation looks like:

@Override
public void isLeader()
{
...
 /*
 * Start workersCache
 */
 workersCache.getListenable().addListener(workersCacheListener);
 workersCache.start();

 (new RecoveredAssignments(
 client.getZooKeeperClient().getZooKeeper())).recover(
 new RecoveryCallback() {
 public void recoveryComplete (int rc, List<String> tasks) {
 try {
 if(rc == RecoveryCallback.FAILED) {
 LOG.warn("Recovery of assigned tasks failed.");
 } else {
 LOG.info("Assigning recovered tasks");
 recoveryLatch = new CountDownLatch(tasks.size());
 assignTasks(tasks);
 }

 new Thread(new Runnable() {
 public void run() {
 try {
 /*
 * Wait until recovery is complete
 */
 recoveryLatch.await();

 /*
 * Start tasks cache
 */
 tasksCache.getListenable().
 addListener(tasksCacheListener);
 tasksCache.start();
 } catch (Exception e) {
 LOG.warn("Exception while assigning
 and getting tasks.",
 e);
 }
 }
 }).start();

Recipes | 145

www.it-ebooks.info

http://www.it-ebooks.info/

 } catch (Exception e) {
 LOG.error("Exception while executing the recovery callback",
 e);
 }
 }
 });
 }

We start the workers cache before anything else to make sure that we have
workers to assign tasks to.
Once we determine that we have tasks to assign that have not been assigned by
the previous master, we proceed with assigning them.
We implement a barrier so that we wait until the assignment of recovered tasks
ends before we move into assigning new tasks. If we don’t do it, then the new
master ends up assigning all recovered tasks again. Also, we do it in a separate
thread just so that we don’t lock the ZooKeeper client callback thread.
Once the master finishes with assigning recovered tasks, we start assigning new
tasks.

We implement this method as part of the CuratorMasterLatch class, and CuratorMas
terLatch implements LeaderLatchListener. We need to register the listener, however,
before we actually start. We do both in the runForMaster method, on top of adding two
other listeners for watch events and errors, respectively:

public void runForMaster() {
 client.getCuratorListenable().addListener(masterListener);
 client.getUnhandledErrorListenable().addListener(errorsListener);
 leaderLatch.addListener(this);
 leaderLatch.start();
}

For the notLeader call, which we execute once the master loses leadership, we simply
close everything, which is sufficient for the purposes of this example. For a real appli‐
cation, you may need to clean up some local state and wait to become master again. If
the LeaderLatch object is not closed, the Curator client will be considered for leadership
again.

Leader Selector
An alternative recipe for electing a master is LeaderSelector. The main difference
between LeaderLatch and LeaderSelector is the listener interface they use. LeaderSe
lector uses LeaderSelectorListener instead, which defines a takeLeadership meth‐
od and inherits stateChanged. We can use the leader latch primitive to elect a master
in our application. First, we need a LeaderSelector instance:

leaderSelector = new LeaderSelector(client, "/master", this);

146 | Chapter 8: Curator: A High-Level API for ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

The constructor of LeaderSelector takes a Curator framework client, a ZooKeeper
path for the leadership group this master is participating in, and an implementation of
LeaderSelectorListener. The leadership group is the group of Curator clients par‐
ticipating in the master election. The LeaderSelectorListener implementation must
contain both a takeLeadership method and a stateChanged one. The takeLeader
ship method is executed upon acquiring leadership, and most of its code for our ex‐
ample is the same as the code for isLeader. In our case, we implement it as follows:

CountDownLatch leaderLatch = new CountDownLatch(1);
CountDownLatch closeLatch = new CountDownLatch(1);

@Override
public void takeLeadership(CuratorFramework client) throws Exception
{
...
 /*
 * Start workersCache
 */
 workersCache.getListenable().addListener(workersCacheListener);
 workersCache.start();

 (new RecoveredAssignments(
 client.getZooKeeperClient().getZooKeeper())).recover(
 new RecoveryCallback() {
 public void recoveryComplete (int rc, List<String> tasks) {
 try {
 if(rc == RecoveryCallback.FAILED) {
 LOG.warn("Recovery of assigned tasks failed.");
 } else {
 LOG.info("Assigning recovered tasks");
 recoveryLatch = new CountDownLatch(tasks.size());
 assignTasks(tasks);
 }

 new Thread(new Runnable() {
 public void run() {
 try {
 /*
 * Wait until recovery is complete
 */
 recoveryLatch.await();

 /*
 * Start tasks cache
 */
 tasksCache.getListenable().
 addListener(tasksCacheListener);
 tasksCache.start();
 } catch (Exception e) {
 LOG.warn("Exception while assigning

Recipes | 147

www.it-ebooks.info

http://www.it-ebooks.info/

 and getting tasks.",
 e);
 }
 }
 }).start();

 /*
 * Decrement latch
 */

 leaderLatch.countDown();
 } catch (Exception e) {
 LOG.error("Exception while executing the recovery callback",
 e);
 }
 }
 });

 /*
 * This latch is to prevent this call from exiting. If we exit, then
 * we release mastership.
 */
 closeLatch.await();

 }

We provide a separate CountDownLatch to wait until this Curator client acquires
leadership.
If the master exits the takeLeadership call, it gives up mastership. We use a
CountDownLatch to prevent it from exiting until we close the master.

We implement this method as part of the CuratorMaster class, and CuratorMaster
implements LeaderSelectorListener. It is important that the master only exits take
Leadership if it wants to release mastership. We need, essentially, some form of lock to
prevent it from exiting. In our implementation, we use a latch that we decrement when
exiting the master instance.

We also start the leader selector in the runForMaster call, but unlike with Leader
Latch, we do not need to register a listener here (we register the listener in the con‐
structor instead):

public void runForMaster() {
 client.getCuratorListenable().addListener(masterListener);
 client.getUnhandledErrorListenable().addListener(errorsListener);
 leaderSelector.setId(myId);
 leaderSelector.start();
}

148 | Chapter 8: Curator: A High-Level API for ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

We additionally give this master an arbitrary identifier. Although we have not done it
in this example, we could also set the leader selector to automatically requeue (Leader
Selector.autoRequeue) upon losing leadership. Requeuing means that this client
continuously tries to acquire leadership and it executes takeLeadership each time
leadership is acquired.

As part of implementing the LeaderSelectorListener interface, we implement a
method to handle connection state changes:

@Override
public void stateChanged(CuratorFramework client, ConnectionState newState)
{
 switch(newState) {
 case CONNECTED:
 //Nothing to do in this case.

 break;
 case RECONNECTED:
 // Reconnected, so I should
 // still be the leader.

 break;
 case SUSPENDED:
 LOG.warn("Session suspended");

 break;
 case LOST:
 try {
 close();
 } catch (IOException e) {
 LOG.warn("Exception while closing", e);
 }

 break;
 case READ_ONLY:
 // We ignore this case.

 break;
 }
}

All operations of the master are through ZooKeeper. If the connection is lost,
no operation of the master will go through. It is safe to do nothing.
If the session is lost, we simply close this master.

Children Cache
The last recipe we make use of in our example is the children cache (class PathChil
drenCache). We use it both for the list of workers and for the list of tasks. This cache is

Recipes | 149

www.it-ebooks.info

http://www.it-ebooks.info/

responsible mainly for keeping a local copy of the list of children and for notifying us
of changes to the cached set. Note that because of timing issues, the set might not be
identical to the one ZooKeeper stores at a particular point in time, although it will
eventually reflect changes to the ZooKeeper state.

To deal with changes for each instance of the cache, we implement the PathChildren
CacheListener interface, which has a single childEvent method. For the list of workers,
we only care about workers going away because we need to reassign their tasks. Addi‐
tions to the list are important when assigning new tasks:

PathChildrenCacheListener workersCacheListener = new PathChildrenCacheListener()
{
 public void childEvent(CuratorFramework client, PathChildrenCacheEvent event)
 {
 if(event.getType() == PathChildrenCacheEvent.Type.CHILD_REMOVED) {
 /*
 * Obtain just the worker's name
 */
 try {
 getAbsentWorkerTasks(event.getData().getPath().replaceFirst(
 "/workers/", ""));
 } catch (Exception e) {
 LOG.error("Exception while trying to re-assign tasks.", e);
 }
 }
 }
};

For the list of tasks, we use additions to the list to trigger the assignment process:

PathChildrenCacheListener tasksCacheListener = new PathChildrenCacheListener() {
 public void childEvent(CuratorFramework client, PathChildrenCacheEvent
 event) {
 if(event.getType() == PathChildrenCacheEvent.Type.CHILD_ADDED) {
 try {
 assignTask(event.getData().getPath().replaceFirst("/tasks/",""));
 } catch (Exception e) {
 LOG.error("Exception when assigning task.", e);
 }
 }
 }
};

Note that we make an assumption here that there is at least one worker available to
assign tasks to. In the case that there is no worker available, we need to hold the assign‐
ment by remembering the additions to the list that have not been assigned and assign
them upon an addition to the list of workers. We do not implement this feature for the
sake of simplicity; we leave it as an exercise for the reader.

150 | Chapter 8: Curator: A High-Level API for ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

Takeaway Messages
Curator implements a set of nice extensions to the ZooKeeper API, abstracting away
some of the complexities of ZooKeeper and implementing best practices gleaned from
production experience and discussions in the community. In this chapter, we have cov‐
ered how to leverage some of the features of Curator for the implementation of the
master role in our master-worker example. We have particularly used the leader election
implementations and the children cache to implement important features of the master.
These two recipes are not the only ones Curator implements, however; a number of
other recipes and features are available.

Takeaway Messages | 151

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PART III

Administering ZooKeeper

This part of the book gives you the information you need to administer ZooKeeper. The
internals provide the background that lets you make critical choices such as how many
ZooKeeper servers to run and how to tune their communications.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

ZooKeeper Internals

This chapter is a bit special compared to the others. It is not going to explicitly explain
anything related to how to build applications with ZooKeeper. Instead, it explains how
ZooKeeper works internally, by describing its protocols at a high level and the mecha‐
nisms it uses to tolerate faults while providing high performance. This content is im‐
portant because it gives some deeper insight into why things work the way they work
with ZooKeeper. This insight is important if you’re planning on running ZooKeeper. It
consequently serves as background for the next chapter.

As we saw in earlier chapters, ZooKeeper runs on an ensemble of servers while clients
connect to these servers to execute operations. But what exactly are these servers doing
with the operations the clients send? We hinted in Chapter 2 that we elect a distinguished
server that we call the leader. The remaining servers, who follow the leader, are called
followers. The leader is the central point for handling all requests that change the Zoo‐
Keeper system. It acts as a sequencer and establishes the order of updates to the Zoo‐
Keeper state. Followers receive and vote on the updates proposed by the leader to guar‐
antee that updates to the state survive crashes.

The leader and the followers constitute the core entities guaranteeing the order of state
updates despite crashes. There is a third kind of server, however, called an observer.
Observers do not participate in the decision process of what requests get applied; they
only learn what has been decided upon. Observers are there for scalability reasons.

In this chapter, we present the protocols we use to implement the ZooKeeper ensemble
and the internals of servers and clients. We start with a discussion of some common
concepts that we use throughout the remainder of the chapter regarding client requests
and transactions.

155

www.it-ebooks.info

http://www.it-ebooks.info/

Code References
Because this is a chapter about the internals, we figured that it might
be interesting to provide references to the code, so that you can match
the descriptions in this chapter to the source code. Pointers to classes
and methods are provided where suitable.

Requests, Transactions, and Identifiers
ZooKeeper servers process read requests (exists, getData, and getChildren) locally.
When a server receives, say, a getData request from a client, it reads its state and returns
it to the client. Because it serves requests locally, ZooKeeper is pretty fast at serving read-
dominated workloads. We can add more servers to the ZooKeeper ensemble to serve
more read requests, increasing overall throughput capacity.

Client requests that change the state of ZooKeeper (create, delete, and setData) are
forwarded to the leader. The leader executes the request, producing a state update that
we call a transaction. Whereas the request expresses the operation the way the client
originates it, the transaction comprises the steps taken to modify the ZooKeeper state
to reflect the execution of the request. Perhaps an intuitive way to explain this is to
propose a simple, non-ZooKeeper operation. Say that the operation is inc(i), which
increments the value of the variable i. One possible request is consequently inc(i). Say
that the value of i is 10 and after incrementing it becomes 11. Using the concepts of
request and transaction, the request is inc(i) and the transaction is i, 11 (variable i
takes value 11).

Let’s now look at a ZooKeeper example. Say that a client submits a setData request on
a given znode /z. setData should change the data of the znode and bump up the version
number. So, a transaction for this request contains two important fields: the new data
of the znode and the new version number of the znode. When applying the transaction,
a server simply replaces the data of /z with the data in the transaction and the version
number with the value in the transaction, rather than bumping it up.

A transaction is treated as a unit, in the sense that all changes it contains must be applied
atomically. In the setData example, changing the data without an accompanying change
to the version accordingly leads to trouble. Consequently, when a ZooKeeper ensemble
applies transactions, it makes sure that all changes are applied atomically and there is
no interference from other transactions. There is no rollback mechanism like with tra‐
ditional relational databases. Instead, ZooKeeper makes sure that the steps of transac‐
tions do not interfere with each other. For a long time, the design used a single thread
in each server to apply transactions. Having a single thread guarantees that the trans‐
actions are applied sequentially without interference. Recently, ZooKeeper has added
support for multiple threads to speed up the process of applying transactions.

156 | Chapter 9: ZooKeeper Internals

www.it-ebooks.info

http://www.it-ebooks.info/

A transaction is also idempotent. That is, we can apply the same transaction twice and
we will get the same result. We can even apply multiple transactions multiple times and
get the same result, as long as we apply them in the same order every time. We take
advantage of this idempotent property during recovery.

When the leader generates a new transaction, it assigns to the transaction an identifier
that we call a ZooKeeper transaction ID (zxid). Zxids identify transactions so that they
are applied to the state of servers in the order established by the leader. Servers also
exchange zxids when electing a new leader, so they can determine which nonfaulty
server has received more transactions and can synchronize their states.

A zxid is a long (64-bit) integer split into two parts: the epoch and the counter. Each
part has 32 bits. The use of epochs and counters will become clear when we discuss Zab,
the protocol we use to broadcast state updates to servers.

Leader Elections
The leader is a server that has been chosen by an ensemble of servers and that continues
to have support from that ensemble. The purpose of the leader is to order client requests
that change the ZooKeeper state: create, setData, and delete. The leader transforms
each request into a transaction, as explained in the previous section, and proposes to
the followers that the ensemble accepts and applies them in the order issued by the
leader.

To exercise leadership, a server must have support from a quorum of servers. As we
discussed in Chapter 2, quorums must intersect to avoid the problem that we call split
brain: two subsets of servers making progress independently. This situation leads to
inconsistent system state, and clients end up getting different results depending on
which server they happen to contact. We gave a concrete example of this situation in
“ZooKeeper Quorums” on page 24.

The groups that elect and support a leader must intersect on at least one server process.
We use the term quorum to denote such subsets of processes. Quorums pairwise
intersect.

Progress
Because a quorum of servers is necessary for progress, ZooKeeper
cannot make progress in the case that enough servers have perma‐
nently failed that no quorum can be formed. It is OK if servers are
brought down and eventually boot up again, but for progress to be
made, a quorum must eventually boot up. We relax this constraint
when we discuss the possibility of reconfiguring ensembles in the next
chapter. Reconfiguration can change quorums over time.

Leader Elections | 157

www.it-ebooks.info

http://www.it-ebooks.info/

Each server starts in the LOOKING state, where it must either elect a new leader or find
the existing one. If a leader already exists, other servers inform the new one which server
is the leader. At this point, the new server connects to the leader and makes sure that its
own state is consistent with the state of the leader.

If an ensemble of servers, however, are all in the LOOKING state, they must communicate
to elect a leader. They exchange messages to converge on a common choice for the
leader. The server that wins this election enters the LEADING state, while the other servers
in the ensemble enter the FOLLOWING state.

The leader election messages are called leader election notifications, or simply notifica‐
tions. The protocol is extremely simple. When a server enters the LOOKING state, it sends
a batch of notification messages, one to each of the other servers in the ensemble. The
message contains its current vote, which consists of the server’s identifier (sid) and the
zxid (zxid) of the most recent transaction it executed. Thus, (1,5) is a vote sent by the
server with a sid of 1 and a most recent zxid of 5. (For the purposes of leader election,
a zxid is a single number, but in some other protocols it is represented as an epoch and
a counter.)

Upon receiving a vote, a server changes its vote according to the following rules:

1. Let voteId and voteZxid be the identifier and the zxid in the current vote of the
receiver, whereas myZxid and mySid are the values of the receiver itself.

2. If (voteZxid > myZxid) or (voteZxid = myZxid and voteId > mySid), keep the
current vote.

3. Otherwise, change my vote by assigning myZxid to voteZxid and mySid to vote
Zxid.

In short, the server that is most up to date wins, because it has the most recent zxid.
We’ll see later that this simplifies the process of restarting a quorum when a leader dies.
If multiple servers have the most recent zxid, the one with the highest sid wins.

Once a server receives the same vote from a quorum of servers, the server declares the
leader elected. If the elected leader is the server itself, it starts executing the leader role.
Otherwise, it becomes a follower and tries to connect to the elected leader. Note that it
is not guaranteed that the follower will be able to connect to the elected leader. The
elected leader might have crashed, for example. Once it connects, the follower and the
leader sync their state, and only after syncing can the follower start processing new
requests.

158 | Chapter 9: ZooKeeper Internals

www.it-ebooks.info

http://www.it-ebooks.info/

Looking for a Leader
The Java class in ZooKeeper that implements an election is Quorum
Peer. Its run method implements the main loop of the server. When
in the LOOKING state, it executes lookForLeader to elect a leader. This
method basically executes the protocol we have just discussed. Be‐
fore returning, the method sets the state of the server to either LEAD
ING or FOLLOWING. OBSERVING is also an option that will be discussed
later. If the server is leading, it creates a new Leader and runs it. If it
is following, it creates a new Follower and runs it.

Let’s go over an example of an execution of this protocol. Figure 9-1 shows three servers,
each starting with a different initial vote corresponding to the server identifier and the
last zxid of the server. Each server receives the votes of the other two, and after the first
round, servers s2 and s3 change their votes to (1,6). Servers s2 and s3 send a new batch
of notifications after changing their votes, and after receiving these new notifications,
each server has notifications from a quorum with the same vote. They consequently
elect server s1 to be the leader.

Figure 9-1. Example of a leader election execution

Not all executions are as well behaved as the one in Figure 9-1. In Figure 9-2, we show
an example in which s2 makes an early decision and elects a different leader from servers
s1 and s3. This happens because the network happens to introduce a long delay in de‐
livering the message from s1 to s2 that shows that s1 has the higher zxid. In the meantime,
s2 elects s3. In consequence, s1 and s3 will form a quorum, leaving out s2.

Leader Elections | 159

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-2. Interleaving of messages causes a server to elect a different leader

Having s2 elect a different leader does not cause the service to behave incorrectly, because
s3 will not respond to s2 as leader. Eventually s2 will time out trying to get a response
from its elected leader, s3, and try again. Trying again, however, means that during this
time s2 will not be available to process client requests, which is undesirable.

One simple observation from this example is that if s2 had waited a bit longer to elect a
leader, it would have made the right choice. We show this situation in Figure 9-3. It is
hard to know how much time a server should wait, though. The current implementation
of FastLeaderElection, the default leader election implementation, uses a fixed value
of 200 ms (see the constant finalizeWait). This value is longer than the expected mes‐
sage delay in modern data centers (less than a millisecond to a few milliseconds), but
not long enough to make a substantial difference to recovery time. In case this delay (or
any other chosen delay) is not sufficiently long, one or more servers will end up falsely
electing a leader that does not have enough followers, so the servers will have to go back
to leader election. Falsely electing a leader might make the overall recovery time longer
because servers will connect and sync unnecessarily, and still need to send more mes‐
sages to elect another leader.

160 | Chapter 9: ZooKeeper Internals

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-3. Longer delay in electing a leader

What’s Fast about Fast Leader Election?
If you are wondering about it, we call the current default leader elec‐
tion algorithm fast for historical reasons. The initial leader election
algorithm implemented a pull-based model, and the interval for a
server to pull votes was about 1 second. This approach added some
delay to recovery. With the current implementation, we are able to elect
a leader faster.

To implement a new leader election algorithm, we need to implement the Election
interface in the quorum package. To enable users to choose among the leader election
implementations available, the code uses simple integer identifiers (see QuorumPeer.cre
ateElectionAlgorithm()). The other two implementations available currently are
LeaderElection and AuthFastLeaderElection, but they have been deprecated as of
release 3.4.0, so in some future releases you may not even find them.

Zab: Broadcasting State Updates
Upon receiving a write request, a follower forwards it to the leader. The leader executes
the request speculatively and broadcasts the result of the execution as a state update, in
the form of a transaction. A transaction comprises the exact set of changes that a server
must apply to the data tree when the transaction is committed. The data tree is the data
structure holding the ZooKeeper state (see DataTree).

The next question to answer is how a server determines that a transaction has been
committed. This follows a protocol called Zab: the ZooKeeper Atomic Broadcast pro‐
tocol. Assuming that there is an active leader and it has a quorum of followers supporting

Zab: Broadcasting State Updates | 161

www.it-ebooks.info

http://www.it-ebooks.info/

its leadership, the protocol to commit a transaction is very simple, resembling a two-
phase commit:

1. The leader sends a PROPOSAL message, p, to all followers.
2. Upon receiving p, a follower responds to the leader with an ACK, informing the

leader that it has accepted the proposal.
3. Upon receiving acknowledgments from a quorum (the quorum includes the leader

itself), the leader sends a message informing the followers to COMMIT it.

Figure 9-4 illustrates this sequence of steps. In the figure, we assume that the leader
implicitly sends messages to itself.

Figure 9-4. Regular message pattern to commit proposals

Before acknowledging a proposal, the follower needs to perform a couple of additional
checks. The follower needs to check that the proposal is from the leader it is currently
following, and that it is acknowledging proposals and committing transactions in the
same order that the leader broadcasts them in.

Zab guarantees a couple of important properties:

• If the leader broadcasts T and Tʹ in that order, each server must commit T before
committing Tʹ .

• If any server commits transactions T and Tʹ in that order, all other servers must
also commit T before Tʹ .

The first property guarantees that transactions are delivered in the same order across
servers, whereas the second property guarantees that servers do not skip transactions.
Given that the transactions are state updates and each state update depends upon the

162 | Chapter 9: ZooKeeper Internals

www.it-ebooks.info

http://www.it-ebooks.info/

previous state update, skipping transactions could create inconsistencies. The two-
phase commit guarantees the ordering of transactions. Zab records a transaction in a
quorum of servers. A quorum must acknowledge a transaction before the leader com‐
mits it, and a follower records on disk the fact that it has acknowledged the transaction.

As we’ll see in “Local Storage” on page 170, transactions can still end up on some servers
and not on others, because servers can fail while trying to write a transaction to storage.
ZooKeeper can bring all servers up to date whenever a new quorum is created and a
new leader chosen.

ZooKeeper, however, does not expect to have a single active leader the whole time.
Leaders may crash or become temporarily disconnected, so servers may need to move
to a new leader to guarantee that the system remains available. The notion of epochs
represents the changes in leadership over time. An epoch refers to the period during
which a given server exercised leadership. During an epoch, a leader broadcasts pro‐
posals and identifies each one according to a counter. Remember that each zxid includes
the epoch as its first element, so each zxid can easily be associated to the epoch in which
the transaction was created.

The epoch number increases each time a new leader election takes place. The same
server can be the leader for different epochs, but for the purposes of the protocol, a
server exercising leadership in different epochs is perceived as a different leader. If a
server s has been the leader of epoch 4 and is currently the established leader of epoch
6, a follower following s in epoch 6 processes only the messages s sent during epoch 6.
The follower may accept proposals from epoch 4 during the recovery period of epoch
6, before it starts accepting new proposals for epoch 6. Such proposals, however, are
sent as part of epoch 6’s messages.

Recording accepted proposals in a quorum is critical to ensure that all servers eventually
commit transactions that have been committed by one or more servers, even if the leader
crashes. Detecting perfectly that leaders (or any server) have crashed is very hard, if not
impossible, in many settings, so it is very possible to falsely suspect that a leader has
crashed.

Most of the difficulty with implementing a broadcast protocol is related to the presence
of concurrent leaders, not necessarily in a split-brain scenario. Multiple concurrent
leaders could make servers commit transactions out of order or skip transactions alto‐
gether, which leaves servers with inconsistent states. Preventing the system from ever
having two servers believing they are leaders concurrently is very hard. Timing issues
and dropped messages might lead to such scenarios, so the broadcast protocol cannot
rely on this assumption. To get around this problem, Zab guarantees that:

Zab: Broadcasting State Updates | 163

www.it-ebooks.info

http://www.it-ebooks.info/

• An elected leader has committed all transactions that will ever be committed from
previous epochs before it starts broadcasting new transactions.

• At no point in time will two servers have a quorum of supporters.

To implement the first requirement, a leader does not become active until it makes sure
that a quorum of servers agrees on the state it should start with for the new epoch. The
initial state of an epoch must encompass all transactions that have been previously
committed, and possibly some other ones that had been accepted before but not com‐
mitted. It is important, though, that before the leader makes any new proposals for epoch
e, it commits all proposals that will ever be committed from epochs up to and including
e – 1. If there is a proposal lying around from epoch eʹ < e and it is not committed by
the leader of e by the time it makes the first proposal of e, the old proposal is never
committed.

The second point is somewhat tricky because it doesn’t really prevent two leaders from
making progress independently. Say that a leader l is leading and broadcasting trans‐
actions. At some point, a quorum of servers Q believes l is gone, and it elects a new
leader, lʹ . Let’s say that T is a transaction that was being broadcast at the time Q aban‐
doned l, and that a strict subset of Q has successfully recorded T. After lʹ is elected,
enough processes not in Q also record T, forming a quorum for T. In this case, T is
committed even after lʹ has been elected. But don’t worry; this is not a bug. Zab guar‐
antees that T is part of the transactions committed by lʹ , by guaranteeing that the quo‐
rum of supporters of lʹ contain at least one follower that has acknowledged T. The key
point here is that lʹ and l do not have a quorum of supporters simultaneously.

Figure 9-5 illustrates this scenario. In the figure, l is server s5, lʹ is s3, Q comprises s1

through s3, and the zxid of T is ⟨1,1⟩. After receiving the second confirmation, s5 is able
to send a commit message to s4 to tell it to commit the transaction. The other servers
ignore messages from s5 once they start following s3. Note that s3 acknowledged ⟨1,1⟩,
so it is aware of the transaction when it establishes leadership.

We have just promised that Zab ensures the new leader lʹ  does not miss ⟨1,1⟩, but how
does it happen exactly? Before becoming active, the new leader lʹ must learn all pro‐
posals that servers in the old quorum have accepted previously, and it must get a promise
that these servers won’t accept further proposals from previous leaders. In the example
in Figure 9-5, the servers forming a quorum and supporting lʹ promise that they won’t
accept any more proposals from leader l. At that point, if leader l is still able to commit
any proposal, as it does with ⟨1,1⟩, the proposal must have been accepted by at least one
server in the quorum that made the promise to the new leader. Recall that quorums
must overlap in at least one server, so the quorum that l uses to commit and the quorum
that lʹ talks to must have at least one server in common. Consequently, lʹ  includes
⟨1,1⟩ in its state and propagates it to its followers.

164 | Chapter 9: ZooKeeper Internals

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-5. Leaders overlapping illustration

Recall that when electing a leader, servers pick the one with the highest zxid. This saves
ZooKeeper from having to transfer proposals from followers to the leader; it only needs
to transfer state from the leader to the followers. Say instead that we have at least one
follower that has accepted a proposal that the leader hasn’t. Before syncing up with the
other followers, the leader would have to receive and accept the proposal. However, if
we pick the server with the highest zxid, then we can completely skip this step and jump
directly into bringing the followers up to date.

When transitioning between epochs, ZooKeeper uses two different ways to update the
followers in order to optimize the process. If the follower is not too far behind the leader,
the leader simply sends the missing transactions. They are always the most recent trans‐
actions, because followers accept all transactions in strict order. This update is called a
DIFF in the code. If the follower is lagging far behind, ZooKeeper does a full snapshot
transfer, called a SNAP in the code. Doing a full snapshot transfer increases recovery
time, so sending a few missing transactions is preferable, but not always possible if the
follower is far behind.

The DIFF a leader sends to a follower corresponds to the proposals that the leader has
in its transaction log, whereas the SNAP is the latest valid snapshot that the leader has.
Later in this chapter we discuss these two types of files that we keep on disk.

Zab: Broadcasting State Updates | 165

www.it-ebooks.info

http://www.it-ebooks.info/

Diving into the Code
Here is a small guide to the code. Most of the Zab code is in Leader,
LearnerHandler, and Follower. Instances of Leader and LearnerHan
dler are executed by the leader server, and Follower is executed by
followers. Two important methods to look at are Leader.lead and
Follower.followLeader. They are actually the methods executed
when the servers transition from LOOKING to either LEADING or FOLLOW
ING in QuorumPeer.
For DIFF versus SNAP, follow the code in LearnerHandler.run to see
how the code decides which proposals to send during a DIFF, and how
snapshots are serialized and sent.

Observers
We have focused so far on leaders and followers, but there is a third kind of server that
we have not discussed: observers. Observers and followers have some aspects in com‐
mon. In particular, they commit proposals from the leader. Unlike followers, though,
observers do not participate in the voting process we discussed earlier. They simply
learn the proposals that have been committed via INFORM messages. Both followers and
observers are called learners because the leader tells them about changes of state.

Rationale Behind INFORM Messages
Because observers do not vote to accept a proposal, a leader does not
send proposals to observers, and the commit messages that leaders
send to followers do not contain the proposal itself, only its zxid. Con‐
sequently, just sending the commit message to an observer does not
enable the observer to apply the proposal. That’s the reason for using
INFORM messages, which are essentially commit messages containing
the proposals being committed.
In short, followers get two messages whereas observers get just one.
Followers get the content of the proposal in a broadcast, followed by
a simple commit message that has just the zxid. In contrast, observ‐
ers get a single INFORM message with the content of the committed
proposal.

Servers that participate in the vote that decides which proposals are committed are called
PARTICIPANT servers. A PARTICIPANT server can be either a leader or a follower. Ob‐
servers, in contrast, are called OBSERVER servers.

One main reason for having observers is scalability of read requests. By adding more
observers, we can serve more read traffic without sacrificing the throughput of writes.

166 | Chapter 9: ZooKeeper Internals

www.it-ebooks.info

http://www.it-ebooks.info/

Note that the throughput of writes is driven by the quorum size. If we add more servers
that can vote, we end up with larger quorums, which reduces write throughput. Adding
observers, however, is not completely free of cost; each new observer induces the cost
of one extra message per committed transaction. This cost is less, however, than that of
adding servers to the voting process.

Another reason for observers is to have a deployment that spans multiple data centers.
Scattering participants across data centers might slow down the system significantly
because of the latency of links connecting data centers. With observers, update requests
can be executed with high throughput and low latency in a single data center, while
propagating to other data centers so that clients in other locations can consume them.
Note that the use of observers does not eliminate network messages across data centers,
because observers have to both forward update requests to the leader and process INFORM
messages. It instead enables the messages necessary to commit updates to be exchanged
in a single data center when all participants are set to run in the same data center.

The Skeleton of a Server
Leaders, followers, and observers are all ultimately servers. The main abstraction we
use in the implementation of a server is the request processor. A request processor is an
abstraction of the various stages in a processing pipeline, and each server implements
a sequence of such request processors. We can think of each processor as an element
adding to the processing of a request. After being processed by all processors in the
pipeline of a server, a given request can be declared to have been fully processed.

Request Processors
ZooKeeper code has an interface called RequestProcessor. The main
method of the interface is processRequest, which takes a Request
parameter. In a pipeline of request processors, the processing of re‐
quests for consecutive processors is usually decoupled using queues.
When a processor has a request for the next processor, it queues the
request, where it can wait until the next processor is ready to con‐
sume it.

Standalone Servers
The simplest pipeline in ZooKeeper is for the standalone server (class ZooKeeperServ
er, no replication). Figure 9-6 shows the pipeline for this type of server. It has three
request processors: PrepRequestProcessor, SyncRequestProcessor, and FinalRe
questProcessor.

The Skeleton of a Server | 167

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-6. Pipeline of a standalone server

PrepRequestProcessor accepts a client request and executes it, generating a transaction
as a result. Recall that the transaction is the result of executing an operation that is to
be applied directly to the ZooKeeper data tree. The transaction data is added to the
Request object in the form of a header and a transaction record. Also, note that only
operations that change the state of ZooKeeper induce a transaction; read operations do
not result in a transaction. The attributes referring to a transaction in a Request object
are null for read requests.

The next request processor is SyncRequestProcessor. SyncRequestProcessor is re‐
sponsible for persisting transactions to disk. It essentially appends transactions in order
to a transaction log and generates snapshots frequently. We discuss disk state in more
detail in the next section of this chapter.

The next and final processor is FinalRequestProcessor. It applies changes to the Zoo‐
Keeper data tree when the Request object contains a transaction. Otherwise, this pro‐
cessor reads the data tree and returns to the client.

Leader Servers
When we switch to quorum mode, the server pipelines change a bit. Let’s start with the
leader pipeline (class LeaderZooKeeperServer), illustrated in Figure 9-7.

Figure 9-7. Pipeline of a leader server

The first processor is still PrepRequestProcessor, but the following processor now
becomes ProposalRequestProcessor. It prepares proposals and sends them to the fol‐
lowers. ProposalRequestProcessor forwards all requests to CommitRequestProces
sor, and additionally forwards the write requests to SyncRequestProcessor.

168 | Chapter 9: ZooKeeper Internals

www.it-ebooks.info

http://www.it-ebooks.info/

SyncRequestProcessor works the same as it does for the standalone server, and persists
transactions to disk. It ends by triggering AckRequestProcessor, a simple request pro‐
cessor that generates an acknowledgment back to itself. As we mentioned earlier, the
leader expects acknowledgments from every server in the quorum, including itself.
AckRequestProcessor takes care of this.

The other processor following ProposalRequestProcessor is CommitRequestProces
sor. CommitRequestProcessor commits proposals that have received enough acknowl‐
edgments. The acknowledgments are actually processed in the Leader class (the Lead
er.processAck() method), which adds committed requests to a queue in CommitRe
questProcessor. The request processor thread processes this queue.

The next and final processor is FinalRequestProcessor, which is the same as the one
used for the standalone server. FinalRequestProcessor applies update requests and
executes read requests. Before FinalRequestProcessor, there stands a simple request
processor that removes elements of a list of proposals to be applied. This request pro‐
cessor is called ToBeAppliedRequestProcessor. The list of to-be-applied requests con‐
tains requests that have been acknowledged by a quorum and are waiting to be applied.
The leader uses this list to synchronize with followers and adds to this list when pro‐
cessing acknowledgments. ToBeAppliedRequestProcessor removes elements from
this list after processing the request with FinalRequestProcessor.

Note that only update requests get into the to-be-applied list that ToBeAppliedRequest
Processor removes items from. ToBeAppliedRequestProcessor does not do any extra
processing for read requests other than processing them with FinalRequestProcessor.

Follower and Observer Servers
Let’s talk now about followers (class FollowerRequestProcessor). Figure 9-8 shows
the request processors a follower uses. Note that there isn’t a single sequence of pro‐
cessors and that inputs come in different forms: client requests, proposals, and commits.
We use arrows to specify the different paths a follower takes.

Figure 9-8. Pipeline of a follower server

The Skeleton of a Server | 169

www.it-ebooks.info

http://www.it-ebooks.info/

We start with FollowerRequestProcessor, which receives and processes client re‐
quests. FollowerRequestProcessor forwards requests to CommitRequestProcessor,
additionally forwarding write requests to the leader. CommitRequestProcessor for‐
wards read requests directly to FinalRequestProcessor, whereas for write requests,
CommitRequestProcessor must wait for a commit before forwarding to FinalRequest
Processor.

When the leader receives a new write request, directly or through a learner, it generates
a proposal and forwards it to followers. Upon receiving a proposal, a follower sends it
to SyncRequestProcessor. SyncRequestProcessor processes the request, logging it to
disk, and forwards it to SendAckRequestProcessor. SendAckRequestProcessor ac‐
knowledges the proposal to the leader. After the leader receives enough acknowledg‐
ments to commit a proposal, the leader sends commit messages to the followers (and
sends INFORM messages to the observers). Upon receiving a commit message, a follower
processes it with CommitRequestProcessor.

To guarantee that the order of execution is preserved, CommitRequestProcessor stalls
the processing of pending requests once it encounters a write request. This means any
read requests that were received after a write request will be blocked until the write
request passes the CommitRequestProcessor. By waiting, it guarantees that requests are
executed in the received order.

The request pipeline for observers (class ObserverZooKeeperServer) is very similar to
the one for followers. But because observers do not need to acknowledge proposals, it
is not necessary to send acknowledgment messages back to the leader or persist trans‐
actions to disk. Discussions are under way for making observers persist transactions to
disk to speed up recovery for the observers, though. Consequently, future releases of
ZooKeeper might have this feature.

Local Storage
We have already mentioned transaction logs and snapshots, and that SyncRequestPro
cessor is the processor that writes them when processing write proposals. We’ll focus
a bit more on them in this section.

Logs and Disk Use
Recall that servers use the transaction log to persist transactions. Before accepting a
proposal, a server (follower or leader) persists the transaction in the proposal to the
transaction log, a file on the local disk of the server to which transactions are appended
in order. Every now and then, the server rolls over the log by closing the current file and
creating a new one.

170 | Chapter 9: ZooKeeper Internals

www.it-ebooks.info

http://www.it-ebooks.info/

Because writing to the transaction log is in the critical path of write requests, ZooKeeper
needs to be efficient about it. Appending to the file can be done efficiently on hard drives,
but there are a couple of other tricks ZooKeeper uses to make it fast: group commits
and padding. Group commits consist of appending multiple transactions in a single write
to the disk. This allows many transactions to be persisted at the cost of a single disk seek.

There is one important caveat about persisting transactions to disk. Modern operating
systems typically cache dirty pages and write them asynchronously to disk media.
However, we need to make sure that transactions have been persisted before we move
on. We consequently need to flush transactions onto disk media. Flushing here simply
means that we tell the operating system to write dirty pages to disk and return when the
operation completes. Because we persist transactions in SyncRequestProcessor, this
processor is the one responsible for flushing. When it is time to flush a transaction to
disk in SyncRequestProcessor, we in fact do it for all queued transactions to implement
the group commit optimization. If there is one single transaction queued, the processor
stills execute the flush. The processor does not wait for more queued transactions, which
could increase the execution latency. For a code reference, check SyncRequestProces
sor.run().

Disk Write Cache
A server acknowledges a proposal only after forcing a write of the
transaction to the transaction log. More precisely, the server calls the
commit method of ZKDatabase, which ultimately calls FileChan
nel.force. This way, the server guarantees that the transaction has
been persisted to disk before acknowledging it. There is a caveat to this
observation, though. Modern disks have a write cache that stores da‐
ta to be written to disk. If the write cache is enabled, a call to force
does not guarantee that, upon return, the data is on media. Instead, it
could be sitting in the write cache. To guarantee that written data is on
media upon returning from a call to FileChannel.force(), the disk
write cache must be disabled. Operating systems have different ways
of disabling it.

Padding consists of preallocating disk blocks to a file. This is done so that updates to
the file system metadata for block allocation do not significantly affect sequential writes
to the file. If transactions are being appended to the log at a high speed, and if blocks
were not preallocated to the file, the file system would need to allocate a new block
whenever it reached the end of the one it was writing to. This would induce at least two
extra disk seeks: one to update the metadata and another back to the file.

To avoid interference with other writes to the system, we strongly recommend that you
write the transaction log to an independent device. A second device can be used for the
operating system files and the snapshots.

Local Storage | 171

www.it-ebooks.info

http://www.it-ebooks.info/

Snapshots
Snapshots are copies of the ZooKeeper data tree. Each server frequently takes a snapshot
of the data tree by serializing the whole data tree and writing it to a file. The servers do
not need to coordinate to take snapshots, nor do they have to stop processing requests.
Because servers keep executing requests while taking a snapshot, the data tree changes
as the snapshot is taken. We call such snapshots fuzzy, because they do not necessarily
reflect the exact state of the data tree at any particular point in time.

Let’s walk through an example to illustrate this. Say that a data tree has only two zno‐
des: /z and /z'. Initially, the data of both /z and /z' is the integer 1. Now consider the
following sequence of steps:

1. Start a snapshot.
2. Serialize and write /z = 1 to the snapshot.
3. Set the data of /z to 2 (transaction T).
4. Set the data of /z' to 2 (transaction Tʹ).
5. Serialize and write /z' = 2 to the snapshot.

This snapshot contains /z = 1 and /z' = 2. However, there has never been a point in
time in which the values of both znodes were like that. This is not a problem, though,
because the server replays transactions. It tags each snapshot with the last transaction
that has been committed when the snapshot starts—call it TS. If the server eventually
loads the snapshot, it replays all transactions in the transaction log that come after TS.
In this case, they are T and Tʹ . After replaying T and Tʹ on top of the snapshot, the
server obtains /z = 2 and /z' = 2, which is a valid state.

An important follow-up question to ask is whether there is any problem with applying
Tʹ again because it had already been applied by the time the snapshot was taken. As we
noted earlier, transactions are idempotent, so as long as we apply the same transactions
in the same order, we will get the same result even if some of them have already been
applied to the snapshot.

To understand this process, assume that applying a transaction consists of reexecuting
the corresponding operation. In the case just described, the operation sets the data of
the znode to a specific value, and the value is not dependent on anything else. Say that
we are setting the data of /z' unconditionally (the version number is -1 in the setDa
ta request). Reapplying the operation succeeds, but we end up with the wrong version
number because we increment it twice. This can cause problems in the following way.
Suppose that these three operations are submitted and executed successfully:

setData /z', 2, -1
setData /z', 3, 2
setData /a, 0, -1

172 | Chapter 9: ZooKeeper Internals

www.it-ebooks.info

http://www.it-ebooks.info/

The first setData operation is the same one we described earlier, but we’ve added two
more setData operations to show that we can end up in a situation in which the second
operation is not executed during a replay because of an incorrect version number. By
assumption, all three requests were executed correctly when they were submitted. Sup‐
pose that a server loads the latest snapshot, which already contains the first setData.
The server still replays the first setData operation because the snapshot is tagged with
an earlier zxid. Because it reexecutes the first setData, the version does not match the
one the second setData operation expects, so this operation does not go through. The
third setData executes regularly because it is also unconditional.

After loading the snapshot and replaying the log, the state of the server is incorrect
because it does not include the second setData request. This execution violates dura‐
bility and the property that there are no gaps in the sequence of requests executed.

Such problems with reapplying requests are taken care of by turning transactions into
state deltas generated by the leader. When the leader generates a transaction for a given
request, as part of generating the transaction, it includes the changes in the request to
the znode or its data and specifies a fixed version number. Reapplying a transaction
consequently does not induce inconsistent version numbers.

Servers and Sessions
Sessions constitute an important abstraction in ZooKeeper. Ordering guarantees,
ephemeral znodes, and watches are tightly coupled to sessions. The session tracking
mechanism is consequently very important to ZooKeeper.

One important task of ZooKeeper servers is to keep track of sessions. The single server
tracks all sessions when running in standalone mode, whereas the leader tracks them
in quorum mode. The leader server and the standalone server in fact run the same
session tracker (see SessionTracker and SessionTrackerImpl). A follower server sim‐
ply forwards session information for all the clients that connect to it to the leader (see
LearnerSessionTracker).

To keep a session alive, a server needs to receive heartbeats for the session. Heartbeats
come in the form of new requests or explicit ping messages (see LearnerHan
dler.run()). In both cases, the server touches sessions by updating the session expira‐
tion time (see SessionTrackerImpl.touchSession()). In quorum mode, a leader sends
a PING message to learners and the learners send back the list of sessions that have been
touched since the last PING. The leader sends a ping to learners every half a tick. A tick
(described in “Basic Configuration” on page 179) is the minimum unit of time that Zoo‐
Keeper uses, expressed in milliseconds. So, if the tick is set to be 2 seconds, then the
leader sends a ping every second.

Servers and Sessions | 173

www.it-ebooks.info

http://www.it-ebooks.info/

Two important points govern session expiration. A data structure called the expiry
queue (see ExpiryQueue) keeps session information for the purposes of expiration. The
data structure keeps sessions in buckets, each bucket corresponding to a range of time
during which the sessions are supposed to expire, and the leader expires the sessions in
one bucket at a time. To determine which bucket to expire, if any, a thread checks the
expiry queue to find out when the next deadline is. The thread sleeps until this deadline,
and when it wakes up it polls the expiry queue for a new batch of sessions to expire.
This batch can, of course, be empty.

To maintain the buckets, the leader splits time into expirationInterval units and
assigns each session to the next bucket that expires after the session expiration time.
The function doing the assignment essentially rounds the expiration time of a session
up to the next higher interval. More concretely, the function evaluates this expression
to determine which bucket a session belongs in when its session expiration time is
updated:

(expirationTime / expirationInterval + 1) * expirationInterval

To provide an example, say that expirationInterval is 2 and the expirationTime for
a given session occurs at time 10. We assign this session to bucket 12 (the result of (10/2
+ 1) * 2). Note that expirationTime keeps increasing as we touch the session, so we
move the session to buckets that expire later accordingly.

One major reason for using a scheme of buckets is to reduce the overhead of checking
for session expiration. A ZooKeeper deployment might have thousands of clients and
consequently thousands of sessions. Checking for session expiration in a fine-grained
manner is not suitable in such situations. Related to this comment, note that if the
expirationInterval is short, ZooKeeper ends up performing session expiration checks
in a fine-grained manner. The expirationInterval is currently one tick, which is typ‐
ically on the order of seconds.

Servers and Watches
Watches (see “Watches and Notifications” on page 20) are one-time triggers set by read
operations, and each watch is triggered by a specific operation. To manage watches on
the server side, a ZooKeeper server implements watch managers. An instance of the
WatchManager class is responsible for keeping a list of current watches that are registered
and for triggering them. All types of servers (standalone, leader, follower, and observer)
process watches in the same way.

The DataTree class keeps a watch manager for child watches and another for data
watches, the two types of watches discussed in “Getting More Concrete: How to Set
Watches” on page 71. When processing a read operation that sets a watch, the class adds
the watch to the manager’s list of watches. Similarly, when processing a transaction, the
class finds out whether any watches are to be triggered for the corresponding

174 | Chapter 9: ZooKeeper Internals

www.it-ebooks.info

http://www.it-ebooks.info/

modification. If there are watches to be triggered, the class calls the trigger method of
the manager. Both adding a watch and triggering a watch start with the execution of a
read request or a transaction in FinalRequestProcessor.

A watch triggered on the server side is propagated to the client. The class responsible
for this is the server cnxn object (see the ServerCnxn class), which represents the con‐
nection between the client and the server and implements the Watcher interface. The
Watcher.process method serializes the watch event to a format that can be used to
transfer it over the wire. The ZooKeeper client receives the serialized version of the
watch event, transforms it back to a watch event, and propagates it to the application.

Watches are tracked only in memory. They are never persisted to the disk. When a client
disconnects from a server, all its watches are removed from memory. Because client
libraries also keep track of their outstanding watches, they will reestablish any out‐
standing watches on the new server that they connect with.

Clients
There are two main classes in the client library: ZooKeeper and ClientCnxn. The Zoo
Keeper class implements most of the API, and this is the class a client application must
instantiate to create a session. Upon creating a session, ZooKeeper associates a session
identifier to it. The identifier is actually generated on the server side of the service (see
SessionTrackerImpl).

The ClientCnx class manages the client socket connection with a server. It maintains a
list of ZooKeeper servers it can connect to and transparently switches to a different
server when a disconnection takes place. Upon reconnecting a session to a different
server, the client also resets pending watches (see ClientCnxn.SendThread.primeCon
nection()). This reset is enabled by default, but can be disabled by setting disableAu
toWatchReset.

Serialization
For the serialization of messages and transactions to send over the network and to store
on disk, ZooKeeper uses Jute, which grew out of Hadoop. Now the two code bases have
evolved separately. Check the org.apache.jute package in the ZooKeeper code base for
the Jute compiler code. (For a long time the ZooKeeper developer team has been dis‐
cussing options for replacing Jute, but we haven’t found a suitable replacement so far.
It has served us well, though, and it hasn’t been critical to replace it.)

The main definition file for Jute is zookeeper.jute. It contains all definitions of messages
and file records. Here is an example of a Jute definition we have in this file:

module org.apache.zookeeper.txn {
...

Clients | 175

www.it-ebooks.info

http://www.it-ebooks.info/

 class CreateTxn {
 ustring path;
 buffer data;
 vector<org.apache.zookeeper.data.ACL> acl;
 boolean ephemeral;
 int parentCVersion;
 }
...
}

This example defines a module containing the definition of a create transaction. The
module maps to a ZooKeeper package.

Takeaway Messages
This chapter has discussed core ZooKeeper mechanisms. Leader election is critical for
availability. Without it, a ZooKeeper ensemble cannot stay up reliably. Having a leader
is necessary but not sufficient. ZooKeeper also needs the Zab protocol to propagate state
updates, which guarantees a consistent state despite possible crashes of the ZooKeeper
servers.

We have reviewed the types of servers: standalone, leader, follower, and observer. They
differ in important ways with respect to the mechanisms they implement and the pro‐
tocols they execute. Their use also has implications for a given deployment. For example,
adding observers enables higher read throughput without affecting write throughput.
Adding observers, however, does not increase the overall availability of the system.

Internally, ZooKeeper servers implement a number of mechanisms and data structures.
Here we have focused on the implementation of sessions and watchers, important con‐
cepts to understand when implementing ZooKeeper applications.

Although we have provided pointers to the code in this chapter, the goal was not to
provide an exhaustive view of the source code. We strongly encourage the reader to
fetch a copy of the code and go over it, using the pointers here as starting points.

176 | Chapter 9: ZooKeeper Internals

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Running ZooKeeper

ZooKeeper was designed not only to be a great building block for developers, but also
to be friendly for operations people. As distributed systems get bigger, managing op‐
erations becomes harder and robust administration practices become more important.
Our vision was that ZooKeeper would be a standard distributed system component that
an operations team could learn and manage well. We have seen from previous examples
that a ZooKeeper server is easy to start up, but there are many knobs and dials to keep
in mind when running a ZooKeeper service. Our goal in this chapter is to get you familiar
and comfortable with the management tools available for running ZooKeeper.

In order for a ZooKeeper service to function correctly, it must be configured correctly.
The distributed computing foundation upon which ZooKeeper is based works only
when required operating conditions are met. For example, all ZooKeeper voting servers
must have the same configuration. It has been our experience that improper or incon‐
sistent configuration is the primary source of operational problems.

A simple example of one such problem happened in the early days of ZooKeeper. A
team of early users had written their application around ZooKeeper, tested it thoroughly,
and then pushed it to production. Even in the early days ZooKeeper was easy to work
with and deploy, so this group pushed their ZooKeeper service and application into
production without ever talking to us.

Shortly after the production traffic started, problems started appearing. We received a
frantic call from operations saying that things were not working. He repeatedly asked
them if they had thoroughly tested their solution before putting it into production, and
they repeatedly assured him that they had. After piecing together the situation, he re‐
alized they were probably suffering from split brain. Finally he asked them to send him
their configuration files. Once he saw them, it was clear what had happened: they had
tested with a standalone ZooKeeper server, but when they went into production they
used three servers to make sure they could tolerate a server failure. Unfortunately, they
forgot to change the configuration, so they ended up pushing three standalone servers.

177

www.it-ebooks.info

http://www.it-ebooks.info/

The clients treated all three servers as part of the same ensemble, but the servers them‐
selves acted independently. Thus, three different groups of clients had three different
(and conflicting) views of the system. It looked like everything was working fine, but
behind the scenes it was chaos.

Hopefully, this example illustrates the importance of ZooKeeper configuration. It takes
some understanding of basic concepts, but in reality it is not hard or complicated. The
key is to know where the knobs are and what they do. That is what this chapter is about.

Configuring a ZooKeeper Server
In this section we will look at the various knobs that govern how a ZooKeeper server
operates. We have already seen a couple of these knobs, but there are many more. They
all have default settings that correspond to the most common case, but often these
should be changed. ZooKeeper was designed for easy use and operation, and we have
succeeded so well that sometimes people get off and running without really under‐
standing their setups. It is tempting to just go with the simplest configuration once
everything starts working, but if you spend the time to learn the different configuration
options, you will find that you can get better performance and more easily diagnose
problems.

In this section we go through each of the configuration parameters, what they mean,
and why you might need to use them. It may feel like a bit of a slog, so if you are looking
for more exciting information, you may want to skip to the next section. If you do,
though, come back at some point to sit down and familiarize yourself with the different
options. It can make a big difference in the stability and performance of your ZooKeeper
installation.

Each ZooKeeper server takes options from a configuration file named zoo.cfg when it
starts. Servers that play similar roles and have the same basic setup can share a file. The
myid file in the data directory distinguishes servers from each other. Each data directory
must be unique to the server anyway, so it is a convenient place to put the distinguishing
file. The server ID contained in the myid file serves as an index into the configuration
file, so that a particular ZooKeeper server can know how it should configure itself. Of
course, if servers have different setups (for example, they store their transaction logs in
different places), each must have its own unique configuration file.

Configuration parameters are usually set in the configuration file. In the sections that
follow, these parameters are presented in list form. Many parameters can also be set
using Java system properties, which generally have the form zookeeper.property
Name. These properties are set using the -D option when starting the server. Where
appropriate, the system property that corresponds to a given parameter will be presented
in parentheses. A configuration parameter in a file has precedence over system
properties.

178 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Configuration
Some configuration parameters do not have a default and must be set for every deploy‐
ment. These are:
clientPort

The TCP port that clients use to connect to this server. By default, the server will
listen on all of its interfaces for connections on this port unless clientPortAd
dress is set. The client port can be set to any number and different servers can listen
on different ports. The default port is 2181.

dataDir and dataLogDir
dataDir is the directory where the fuzzy snapshots of the in-memory database will
be stored. If this server is part of an ensemble, the id file will also be in this directory.

The dataDir does not need to reside on a dedicated device. The snapshots are
written using a background thread that does not lock the database, and the writes
to storage are not synced until the snapshot is complete.

Unless the dataLogDir option is set, the transaction log is also stored in this direc‐
tory. The transaction log is very sensitive to other activity on the same device as
this directory. The server tries to do sequential writes to the transaction log because
the data must be synced to storage before the server can acknowledge a transaction.
Other activity on the device—notably snapshots—can severely affect write through‐
put by causing disk heads to thrash during syncing. So, best practice is to use a
dedicated log device and set dataLogDir to point to a directory on that device.

tickTime

The length of a tick, measured in milliseconds. The tick is the basic unit of meas‐
urement for time used by ZooKeeper, and it determines the bucket size for session
timeout as described in “Servers and Sessions” on page 173.

The timeouts used by the ZooKeeper ensemble are specified in units of tickTime.
This means, in effect, that the tickTime sets the lower bound on timeouts because
the minimum timeout is a single tick. The minimum client session timeout is two
ticks.

The default tickTime is 3,000 milliseconds. Lowering the tickTime allows for
quicker timeouts but also results in more overhead in terms of network traffic
(heartbeats) and CPU time (session bucket processing).

Storage Configuration
This section covers some of the more advanced configuration settings that apply to both
standalone and ensemble configurations. They do not need to be set for ZooKeeper to
function properly, but some (such as dataLogDir) really should be set.

Configuring a ZooKeeper Server | 179

www.it-ebooks.info

http://www.it-ebooks.info/

preAllocSize

The number of kilobytes to preallocate in the transaction log files (zookeeper.pre
AllocSize).

When writing to the transaction log, the server will allocate blocks of preAlloc
Size kilobytes at a time. This amortizes the file system overhead of allocating space
on the disk and updating metadata. More importantly, it minimizes the number of
seeks that need to be done.

By default, preAllocSize is 64 megabytes. One reason to lower this number is if
the transaction log never grows that large. Because a new transaction log is restarted
after each snapshot, if the number of transactions is small between each snapshot
and the transactions themselves are small, 64 megabytes may be too big. For ex‐
ample, if we take a snapshot every 1,000 transactions, and the average transaction
size is 100 bytes, a 100-kilobyte preAllocSize would be much more appropriate.
The default preAllocSize is appropriate for the default snapCount and transactions
that average more than 512 bytes in size.

snapCount

The number of transactions between snapshots (zookeeper.snapCount).

When a ZooKeeper server restarts, it needs to restore its state. Two big factors in
the time it takes to restore the state are the time it takes to read in a snapshot, and
the time it takes to apply transactions that occurred after the snapshot was started.
Snapshotting often will minimize the number of transactions that must be applied
after the snapshot is read in. However, snapshotting does have an effect on the
server’s performance, even though snapshots are written in a background thread.

By default the snapCount is 100000. Because snapshotting does affect performance,
it would be nice if all of the servers in an ensemble were not snapshotting at the
same time. As long as a quorum of servers is not snapshotting at once, the processing
time should not be affected. For this reason, the actual number of transactions in
each snapshot is a random number close to snapCount.

Note also that if snapCount is reached but a previous snapshot is still being taken,
a new snapshot will not start and the server will wait another snapCount transac‐
tions before starting a new snapshot.

autopurge.snapRetainCount

The number of snapshots and corresponding transaction logs to retain when purg‐
ing data.

ZooKeeper snapshots and transaction logs are periodically garbage collected. The
autopurge.snapRetainCount governs the number of snapshots to retain while
garbage collecting. Obviously, not all of the snapshots can be deleted because that

180 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

would make it impossible to recover a server; the minimum for autopurge.snap
RetainCount is 3, which is also the default.

autopurge.purgeInterval

The number of hours to wait between garbage collecting (purging) old snapshots
and logs. If set to a nonzero number, autopurge.purgeInterval specifies the pe‐
riod of time between garbage collection cycles. If set to zero, the default, garbage
collection will not be run automatically but should be run manually using the
zkCleanup.sh script in the ZooKeeper distribution.

fsync.warningthresholdms

The duration in milliseconds of a sync to storage that will trigger a warning
(fsync.warningthresholdms).

A ZooKeeper server will sync a change to storage before it acknowledges the change.

weight.x=n

Used along with group options, this assigns a weight n to a server when forming
quorums. The value n is the weight of a server when voting. A few parts of Zoo‐
Keeper require voting, such as leader election and the atomic broadcast protocol.
By default, the weight of a server is 1. If the configuration defines groups but not
weights, a weight of 1 will be assigned to all servers.

If the sync system call takes too long, system performance can be severely impacted.
The server tracks the duration of this call and will issue a warning if it is longer than
fsync.warningthresholdms. By default, it’s 1,000 milliseconds.

traceFile

Keeps a trace of ZooKeeper operations by logging them in trace files named trace‐
File.year.month.day. Tracing is not done unless this option is set (requestTrace
File).

This option is used to get a detailed view of the operations going through Zoo‐
Keeper. However, to do the logging, the ZooKeeper server must serialize the oper‐
ations and write them to disk. This causes CPU and disk contention. If you use this
option, be sure to avoid putting the trace file on the log device. Also realize that,
unfortunately, tracing does perturb the system and thus may make it hard to re-
create problems that happen when tracing is off. Just to make it interesting, the
traceFile Java system property has no zookeeper prefix and the property name
does not match the name of the configuration variable, so be careful.

Network Configuration
These options place limits on communication between servers and clients. Timeouts
are also covered in this section:

Configuring a ZooKeeper Server | 181

www.it-ebooks.info

http://www.it-ebooks.info/

globalOutstandingLimit

The maximum number of outstanding requests in ZooKeeper (zookeeper.glob
alOutstandingLimit).

ZooKeeper clients can submit requests faster than ZooKeeper servers can process
them. This will lead to requests being queued at the ZooKeeper servers and even‐
tually (as in, in a few seconds) cause the servers to run out of memory. To prevent
this, ZooKeeper servers will start throttling client requests once the globalOut
standingLimit has been reached. But globalOutstandingLimit is not a hard limit;
each client must be able to have at least one outstanding request, or connections
will start timing out. So, after the globalOutstandingLimit is reached, the servers
will read from client connections only if they do not have any pending requests.

To determine the limit of a particular server out of the global limit, we simply divide
the value of this parameter by the number of servers. There is currently no smart
way implemented to figure out the global number of outstanding operations and
enforce the limit accordingly. Consequently, this limit is more of an upper bound
on the number of outstanding requests. As a matter of fact, having the load perfectly
balanced across servers is typically not achievable, so some servers that are running
a bit slower or that are a bit more loaded may end up throttling even if the global
limit has not been reached.

The default limit is 1,000 requests. You will probably not need to modify this pa‐
rameter. If you have many clients that are sending very large requests you may need
to lower the value, but we have never seen the need to change it in practice.

maxClientCnxns

The maximum number of concurrent socket connections allowed from each IP
address.

ZooKeeper uses flow control and limits to avoid overload conditions. The resources
used in setting up a connection are much higher than the resources needed for
normal operations. We have seen examples of errant clients that spun while creating
many ZooKeeper connections per second, leading to a denial of service. To remedy
the problem, we added this option, which will deny new connections from a given
IP address if that address has maxClientCnxns active. The default is 60 concurrent
connections.

Note that the connection count is maintained at each server. If we have an ensemble
of five servers and the default is 60 concurrent connections, a rogue client will
randomly connect to the five different servers and normally be able to establish
close to 300 connections from a single IP address before triggering this limit on one
of the servers.

182 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

clientPortAddress

Limits client connections to those received on the given address.

By default, a ZooKeeper server will listen on all its interfaces for client connections.
However, some servers are set up with multiple network interfaces, generally one
interface on an internal network and another on a public network. If you do not
want a server to allow client connections from the public network, set the client
PortAddress to the address of the interface on the private network.

minSessionTimeout

The minimum session timeout in milliseconds. When clients make a connection,
they request a specific timeout, but the actual timeout they get will not be less than
minSessionTimeout.

ZooKeeper developers would love to be able to detect client failures immediately
and accurately. Unfortunately, as “Building Distributed Systems with ZooKeeper”
on page 7 explained, systems cannot do this under real conditions. Instead, they
use heartbeats and timeouts. The timeouts to use depend on the responsiveness of
the ZooKeeper client and server machines and, more importantly, the latency and
reliability of the network between them. The timeout must be equal to at least the
network round trip time between the client and server, but occasionally packets
will be dropped, and when that happens the time it takes to receive a response is
increased by the retransmission timeout as well as the latency of receiving the re‐
transmitted packet.

By default, minSessionTimeout is two times the tickTime. Setting this timeout too
low will result in incorrect detection of client failures. Setting this timeout too high
will delay the detection of client failures.

maxSessionTimeout

The maximum session timeout in milliseconds. When clients make a connection,
they request a specific timeout, but the actual timeout they get will not be greater
than maxSessionTimeout.

Although this setting does not affect the performance of the system, it does limit
the amount of time for which a client can consume system resources. By default,
maxSessionTimeout is 20 times the tickTime.

Cluster Configuration
When an ensemble of servers provide the ZooKeeper service, we need to configure each
server to have the correct timing and server list so that the servers can connect to each
other and detect failures. These parameters must be the same on all the ZooKeeper
servers in the ensemble:

Configuring a ZooKeeper Server | 183

www.it-ebooks.info

http://www.it-ebooks.info/

initLimit

The timeout, specified in number of ticks, for a follower to initially connect to a
leader.

When a follower makes an initial connection to a leader, there can be quite a bit of
data to transfer, especially if the follower has fallen far behind. initLimit should
be set based on the transfer speed of the network between leader and follower and
the amount of data to be transferred. If the amount of data stored by ZooKeeper is
particularly large (i.e., if there are a large number of znodes or large data sets) or
the network is particularly slow, initLimit should be increased. Because this value
is so specific to the environment, there is no default for it. You should choose a value
that will conservatively allow the largest expected snapshot to be transferred. Be‐
cause you may have more than one transfer happening at a time, you may want to
set initLimit to twice that expected time. If you set the initLimit too high, it will
take longer for initial connections to faulty servers to fail, which can increase re‐
covery time. For this reason it is a good idea to benchmark how long it takes for a
follower to connect to a leader on your network with the amount of data you plan
on using to find your expected time.

syncLimit

The timeout, specified in number of ticks, for a follower to sync with a leader.

A follower will always be slightly behind the leader, but if the follower falls too far
behind—due to server load or network problems, for example—it needs to be
dropped. If the leader hasn’t been able to sync with a follower for more than syn
cLimit ticks, it will drop the follower. Just like initLimit, syncLimit does not have
a default and must be set. Unlike initLimit, syncLimit does not depend on the
amount of data stored by ZooKeeper; instead, it depends on network latency and
throughput. On high-latency networks it will take longer to send data and get re‐
sponses back, so naturally the syncLimit will need to be increased. Even if the
latency is relatively low, you may need to increase the syncLimit because any rel‐
atively large transaction may take a while to transmit to a follower.

leaderServes

A “yes” or “no” flag indicating whether or not a leader will service clients (zookeep
er.leaderServes).

The ZooKeeper server that is serving as leader has a lot of work to do. It talks with
all the followers and executes all changes. This means the load on the leader is
greater than that on the follower. If the leader becomes overloaded, the entire system
may suffer.

This flag, if set to “no,” can remove the burden of servicing client connections from
the leader and allow it to dedicate all its resources to processing the change oper‐
ations sent to it by followers. This will increase the throughput of operations that

184 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

change system state. On the other hand, if the leader doesn’t handle any of the client
connections itself directly, the followers will have more clients because clients that
would have connected to the leader will be spread among the followers. This is
particularly problematic if the number of servers in an ensemble is low. By default,
leaderServes is set to “yes.”

server.x=[hostname]:n:n[:observer]

Sets the configuration for server x.

ZooKeeper servers need to know how to communicate with each other. A config‐
uration entry of this form in the configuration file specifies the configuration for a
given server x, where x is the ID of the server (an integer). When a server starts up,
it gets its number from the myid file in the data directory. It then uses this number
to find the server.x entry. It will configure itself using the data in this entry. If it
needs to contact another server, y, it will use the information in the server.y entry
to contact the server.

The hostname is the name of the server on the network n. There are two TCP port
numbers. The first port is used to send transactions, and the second is for leader
election. The ports typically used are 2888:3888. If observer is in the final field,
the server entry represents an observer.

Note that it is quite important that all servers use the same server.x configuration;
otherwise, the ensemble won’t work properly because servers might not be able to
establish connections properly.

cnxTimeout

The timeout value for opening a connection during leader election (zookeep
er.cnxTimeout).

The ZooKeeper servers connect to each other during leader election. This value
determines how long a server will wait for a connection to complete before trying
again. “Leader Elections” on page 157 showed the purpose of this timeout. The
default value of 5 seconds is very generous and probably will not need to be adjusted.

electionAlg

The election algorithm.

We have included this configuration option for completeness. It selects among dif‐
ferent leader election algorithms, but all have been deprecated except for the one
that is the default. You shouldn’t need to use this option.

Configuring a ZooKeeper Server | 185

www.it-ebooks.info

http://www.it-ebooks.info/

Authentication and Authorization Options
This section contains the options that are used for authentication and authorization.
For infomation on configuration options for Kerberos, refer to “SASL and Kerberos”
on page 113:
zookeeper.DigestAuthenticationProvider.superDigest (Java system property
only)

This system property specifies the digest for the “super” user’s password. (This
feature is disabled by default.) A client that authenticates as super bypasses all ACL
checking. The value of this system property will have the form super:encoded_di
gest. To generate the encoded digest, use the org.apache.zookeeper.server.auth.Di‐
gestAuthenticationProvider utility as follows:

java -cp $ZK_CLASSPATH \
 org.apache.zookeeper.server.auth.DigestAuthenticationProvider super:asdf

The following example command line generates an encoded digest for the password
asdf:

super:asdf->super:T+4Qoey4ZZ8Fnni1Yl2GZtbH2W4=

To start a server using this digest, you can use the following command:

export SERVER_JVMFLAGS
SERVER_JVMFLAGS=-Dzookeeper.DigestAuthenticationProvider.superDigest=
 super:T+4Qoey4ZZ8Fnni1Yl2GZtbH2W4=
./bin/zkServer.sh start

Now, when connecting with zkCli, you can issue the following:

[zk: localhost:2181(CONNECTED) 0] addauth digest super:asdf
[zk: localhost:2181(CONNECTED) 1]

At this point you are authenticated as the super user and will not be restricted by any
ACLs.

Unsecured Connections
The connection between the ZooKeeper client and server is not en‐
crypted, so the super password should not be used over untrusted links.
The safest way to use the super password is to run the client using the
super password on the same machine as the ZooKeeper server.

Unsafe Options
The following options can be useful, but be careful when you use them. They really are
for very special situations. The majority of administrators who think they need them
probably don’t:

186 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

forceSync

A “yes” or “no” option that controls whether data should be synced to storage
(zookeeper.forceSync).

By default, and when forceSync is set to yes, transactions will not be acknowledged
until they have been synced to storage. The sync system call is expensive and is the
cause of one of the biggest delays in transaction processing. If forceSync is set to
no, transactions will be acknowledged as soon as they have been written to the
operating system, which usually caches them in memory before writing them to
disk. Setting forceSync to no will yield an increase in performance at the cost of
recoverability in the case of a server crash or power outage.

jute.maxbuffer (Java system property only)
The maximum size, in bytes, of a request or response. This option can be set only
as a Java system property. There is no zookeeper. prefix on it.

ZooKeeper has some built-in sanity checks, one of which is the amount of data that
can be transferred for a given znode. ZooKeeper is designed to store configuration
data, which generally consists of small amounts of metadata information (on the
order of hundreds of bytes). By default, if a request or response has more than 1
megabyte of data, it is rejected as insane. You may want to use this property to make
the sanity check smaller or, if you really are insane, increase it.

Changing the Sanity Check
Although the size limit specified by jute.maxbuffer is most obvious‐
ly exceeded with a large write, the problem can also happen when
getting the list of children of a znode with a lot of children. If a znode
has hundreds of thousands of immediate child znodes whose names
average 10 characters in length, the default maximum buffer size will
get hit when trying to return the list of children, causing the connec‐
tion to get reset.

skipACL

Skips all ACL checks (zookeeper.skipACL).

There is some overhead associated with ACL checking. This option can be used to
turn off all ACL checking. It will increase performance, but will leave the data com‐
pletely open to any client that can connect to a ZooKeeper server.

readonlymode.enabled (Java system property only)
Setting this value to true enables read-only-mode server support. Clients that re‐
quest read-only-mode support will be able to connect to a server to read (possibly
stale) information even if that server is partitioned from the quorum. To enable
read-only mode, a client needs to set canBeReadOnly to true.

Configuring a ZooKeeper Server | 187

www.it-ebooks.info

http://www.it-ebooks.info/

This feature enables a client to read (but not write) the state of ZooKeeper in the
presence of a network partition. In such cases, clients that have been partitioned
away can still make progress and don’t need to wait until the partition heals. It is
very important to note that a ZooKeeper server that is disconnected from the rest
of the ensemble might end up serving stale state in read-only mode.

Logging
The ZooKeeper server uses SLF4J (the Simple Logging Facade for Java) as an abstraction
layer for logging, and by default uses Log4J to do the actual logging. It may seem like
overkill to use two layers of logging abstractions, and it is. In this section we will give a
brief overview of how to configure Log4J. Although Log4J is very flexible and powerful,
it is also a bit complicated. There are whole books written about it; in this section we
will just give a brief overview of the basics needed to get things going.

The Log4J configuration file is named log4j.properties and is pulled from the classpath.
One disappointing thing about Log4J is that if you don’t have the log4j.properties file in
place, you will get the following output:

log4j:WARN No appenders could be found for logger (org.apache.zookeeper.serv ...
log4j:WARN Please initialize the log4j system properly.

That’s it; all the rest of the log messages will be discarded.

Generally, log4j.properties is kept in a conf directory that is included in the classpath.
Let’s look at the main part of the log4j.properties file that is distributed with ZooKeeper:

zookeeper.root.logger=INFO, CONSOLE
zookeeper.console.threshold=INFO
zookeeper.log.dir=.
zookeeper.log.file=zookeeper.log
zookeeper.log.threshold=DEBUG
zookeeper.tracelog.dir=.
zookeeper.tracelog.file=zookeeper_trace.log

log4j.rootLogger=${zookeeper.root.logger}

log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.Threshold=${zookeeper.console.threshold}
log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
log4j.appender.CONSOLE.layout.ConversionPattern=%d{ISO8601} [myid:%X{myid}] -
...

log4j.appender.ROLLINGFILE=org.apache.log4j.RollingFileAppender
log4j.appender.ROLLINGFILE.Threshold=${zookeeper.log.threshold}
log4j.appender.ROLLINGFILE.File=${zookeeper.log.dir}/${zookeeper.log.file}
log4j.appender.ROLLINGFILE.MaxFileSize=10MB
log4j.appender.ROLLINGFILE.MaxBackupIndex=10
log4j.appender.ROLLINGFILE.layout=org.apache.log4j.PatternLayout

188 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

log4j.appender.ROLLINGFILE.layout.ConversionPattern=%d{ISO8601} [myid:%X{myid}] -
...

This first group of settings, which all start with zookeeper., set up the defaults
for this file. They are actually system properties and can be overridden with the
corresponding -D JVM options on the Java command line. The first line
configures logging. The default set here says that messages below the INFO level
should be discarded and messages should be output using the CONSOLE appender.
You can specify multiple appenders; for example, you could set zookeep
er.root.logger to INFO, CONSOLE, ROLLINGFILE if you wanted to send log
messages to both the CONSOLE and ROLLINGFILE appenders.
The rootLogger is the logger that processes all log messages, because we do not
define any other loggers.
This line associates the name CONSOLE with the class that will actually be handling
the output of the message—in this case, ConsoleAppender.
Appenders can also filter messages. This line states that this appender will ignore
any messages below the INFO level, because that is the threshold set in zookeep
er.root.logger.
Appenders use a layout class to format the messages before they are written out.
We use the pattern layout to log the message level, date, thread information, and
calling location information in addition to the message itself.
The RollingFileAppender will implement rolling log files rather than
continually appending to a single log or console. Unless ROLLINGFILE is
referenced by the rootLogger, this appender will be ignored.
The threshold for the ROLLINGFILE is set to DEBUG. Because the rootLogger filters
out all messages below the INFO level, no DEBUG messages will get to the ROLL
INGFILE. If you want to see the DEBUG messages, you must also change INFO to
DEBUG in zookeeper.root.logger.

Logging can affect the performance of a process, especially at the DEBUG level. At the
same time, logging can provide valuable information for diagnosing problems. A useful
way to balance the performance cost of detailed logging with the insight that logging
gives you is to set the appenders to have thresholds at DEBUG and set the level of the
rootLogger to WARN. When the server is running, if you need to diagnose a problem as
it is happening, you can change the level of the rootLogger to INFO or DEBUG on the fly
with JMX to examine system activity more closely.

Dedicating Resources
As you think about how you will configure ZooKeeper to run on a machine, it is also
important to think about the machine itself. For good, consistent performance you will

Configuring a ZooKeeper Server | 189

www.it-ebooks.info

http://www.it-ebooks.info/

want to have a dedicated log device. This means the log directory must have its own
hard drive that is not used by other processes. You don’t even want ZooKeeper to use it
for the periodic fuzzy snapshots it does.

You should also consider dedicating the whole machine on which it will run to Zoo‐
Keeper. ZooKeeper is a critical component that needs to be reliable. We can use repli‐
cation to handle failures of ZooKeeper servers, so it is tempting to think that the ma‐
chines that ZooKeeper runs on do not need to be particularly reliable and can be shared
with other processes. The problem is that other processes can greatly increase the prob‐
ability of a ZooKeeper failure. If another process starts making the disk thrash or uses
all the memory or CPU, it will cause the ZooKeeper server to fail, or at least perform
very poorly. A particularly problematic scenario is when a ZooKeeper server process
runs on the same server as one of the application processes that it manages. If that
process goes into an infinite loop or starts behaving badly, it may adversely affect the
ZooKeeper server process at the very moment that it is needed to allow other processes
to take over from the bad one. Dedicate a machine to run each ZooKeeper server in
order to avoid these problems.

Configuring a ZooKeeper Ensemble
The notion of quorums, introduced in “ZooKeeper Quorums” on page 24, is deeply
embedded in the design of ZooKeeper. The quorum is relevant when processing requests
and when electing a leader in replicated mode. If a quorum of ZooKeeper servers is up,
the ensemble makes progress.

A related concept is that of observers, explained in “Observers” on page 166. Observers
participate in the ensemble, receiving requests from clients and process state updates
from the servers. The leader, however, does not consider observer acknowledgments
when processing requests. The ensemble also does not consider observer notifications
when electing a leader. Here we discuss how to configure quorums and ensembles.

The Majority Rules
When an ensemble has enough ZooKeeper servers to start processing requests, we call
the set of servers a quorum. Of course, we never want there to be two disjoint sets of
servers that can process requests, or we would end up with split brain. We can avoid the
split-brain problem by requiring that all quorums have at least a majority of servers.
(Note: half of the servers do not constitute a majority; you must have greater than half
the number of servers to have a majority.)

When we set up a ZooKeeper ensemble to use multiple servers, we use majority quorums
by default. ZooKeeper automatically detects that it should run in replicated mode be‐
cause there are multiple servers in the configuration (see “Cluster Configuration” on
page 183), and it defaults to using majority quorums.

190 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

Configurable Quorums
One important property we have mentioned about quorums is that, if one quorum is
dissolved and another formed within the ensemble, the two quorums must intersect in
at least one server. Majority quorums clearly satisfy this intersection property. Quorums
in general, however, are not constrained to majorities, and ZooKeeper allows flexible
configuration of quorums. The particular scheme we use is to group servers into disjoint
sets and assign weights to the servers. To form a quorum in this scheme, we need a
majority of votes from each of a majority of groups. For example, say that we have three
groups, each group containing three servers, and each server having weight 1. To form
a quorum in this example, we need four servers: two servers from one group and two
servers from a different group. In general, the math boils down to the following. If we
have G groups, then we need servers from a subset Gʹ of servers such that |Gʹ | > |G|/2.
Additionally, for each g in Gʹ , we need a subset gʹ of g such that the sum of the weights
Wʹ of gʹ is at least half of the sum of the weights of g (i.e., Wʹ > W/2).

The following configuration option creates a group:
group.x=n[:n]

Enables a hierarchical quorum construction. x is a group identifier and the numbers
following the equals sign correspond to server identifiers. The right side of the
assignment is a colon-separated list of server identifiers. Note that groups must be
disjoint and the union of all groups must be the ZooKeeper ensemble. In other
words, every server in the ensemble must be listed once in some group.

Here is an example of nine servers split across three different groups:

group.1=1:2:3
group.2=4:5:6
group.3=7:8:9

In this example all servers have the same weight, and to form a quorum we need two
servers from two groups, or a total of four servers. With majority quorums, we would
need at least five servers to form a quorum. Note that the quorum cannot be formed
from any subset of four servers, however: an entire group plus a single server from a
different group does not form a quorum.

A configuration like this has a variety of benefits when we are deploying ZooKeeper
across different data centers. For example, one group may represent a group of servers
running in a different data center, and if that data center goes down, ZooKeeper can
keep going.

One way of deploying across three data centers that tolerates one data center going down
and uses majorities is to have three servers in each of two data centers and put only one
server in the third data center. If any of the data centers becomes unavailable, the other
two can form a quorum. This configuration has the advantage that any four servers out
of the seven form a quorum. One shortcoming is that the number of servers is not

Configuring a ZooKeeper Ensemble | 191

www.it-ebooks.info

http://www.it-ebooks.info/

balanced across the data centers. A second shortcoming is that once a data center be‐
comes unavailable, no further server crashes in other data centers are tolerated.

If there are only two data centers available, we can use weights to express a preference,
based, for instance, on the number of ZooKeeper clients in each data center. With only
two data centers, we can’t tolerate either of the data centers going down if the servers
all have equal weight, but we can tolerate one of the two going down if we assign a higher
weight to one of the servers. Say that we assign three servers to each of the data centers
and we include them all in the same group:

group.1=1:2:3:4:5:6

Because all the servers default to the same weight, we will have a quorum of servers as
long as four of the six servers are up. Of course, this means that if one of the data centers
goes down, we will not be able to form a quorum even if the three servers in the other
data center are up.

To assign different weights to servers, we use the following configuration option:
weight.x=n

Used along with group options, this assigns a weight n to a server when forming
quorums. The value n is the weight the server has when voting. A few parts of
ZooKeeper require voting, such as leader election and the atomic broadcast pro‐
tocol. By default, the weight of a server is 1. If the configuration defines groups but
not weights, a weight of 1 will be assigned to all servers.

Let’s say that we want one of the data centers, which we will call D1, to still be able to
function as long as all of its servers are up even if the other data center is down. We can
do this by assigning one of the servers in D1 more weight, so that it can more easily
form a quorum with other servers.

Let’s assume that servers 1, 2, and 3 are in D1. We use the following line to assign server
1 more weight:

weight.1=2

With this configuration, we have seven votes total and we need four votes to form a
quorum. Without the weight.1=2 parameter, any server needs at least three other
servers to form a quorum, but with that parameter server 1 can form a quorum with
just two other servers. So if D1 is up, even if the other data center fails, servers 1, 2, and
3 can form a quorum and continue operation.

These are just a couple of examples of how different quorum configurations might
impact a deployment. The hierarchical scheme we provide is flexible, and it enables
other configurations with different weights and group organizations.

192 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

Observers
Recall that observers are ZooKeeper servers that do not participate in the voting protocol
that guarantees the order of state updates. To set up a ZooKeeper ensemble that uses
observers, add the following line to the configuration files of any servers that are to be
observers:

peerType=observer

You also need to add :observer to the server definition in the configuration file of each
server, like this:

server.1:localhost:2181:3181:observer

Reconfiguration
Wow, configuration is a lot of work, isn’t it? But you’ve worked it all out, and now you
have your ZooKeeper ensemble made up of three different machines. But then a month
or two goes by, and you realize that the number of client processes using ZooKeeper has
grown and it has become a much more mission-critical service. So you want to grow it
to an ensemble of five machines. No big deal, right? You can pull the cluster down late
one night, reconfigure everything, and have it all back up in less than a minute. Your
users may not even see the outage if your applications handle the Disconnected event
correctly. That’s what we thought we when first developed ZooKeeper, but it turns out
that things are more complicated.

Look at the scenario in Figure 10-1. Three machines (A, B, and C) make up the ensemble.
C is lagging behind a bit due to some network congestion, so it has only seen transactions
up to ⟨1,3⟩ (where 1 is the epoch and 3 is the transaction within that epoch, as described
in “Requests, Transactions, and Identifiers” on page 156. But A and B are actively com‐
municating, so C’s lag hasn’t slowed down the system. A and B have been able to commit
up to transaction ⟨1,6⟩.

Figure 10-1. An ensemble of three servers about to change to five

Now suppose we bring down these machines to add D and E into the mix. Of course,
the two new machines don’t have any state at all. We reconfigure A, B, C, D, and E to be
one big ensemble and start everything back up. Because we have five machines, we need

Reconfiguration | 193

www.it-ebooks.info

http://www.it-ebooks.info/

three machines to form a quorum. C, D, and E are enough for a quorum, so in Figure 10-2
we see what happens when they form a quorum and sync up. This scenario can easily
happen if A and B are slow at starting, perhaps because they were started a little after
the other three. Once our new quorum syncs up, A and B will sync with C because it
has the most up-to-date state. However, our three quorum members will each end up
with ⟨1,3⟩ as the last transaction. They never see ⟨1,4⟩, ⟨1,5⟩, and ⟨1,6⟩, because the only
two servers that did see them are not part of this new quorum.

Figure 10-2. An ensemble of five servers with a quorum of three

Because we have an active quorum, these servers can actually commit new transactions.
Let’s say that two new transactions come in: ⟨2,1⟩ and ⟨2,2⟩. Now, in Figure 10-3, when
A and B finally come up and connect with C, who is the leader of the quorum, C wel‐
comes them in and promptly tells them to delete transactions ⟨1,4⟩, ⟨1,5⟩, and ⟨1,6⟩ while
receiving ⟨2,1⟩ and ⟨2,2⟩.

Figure 10-3. An ensemble of five servers that has lost data

This result is very bad. We have lost state, and the state of the replicas is no longer
consistent with clients that observed ⟨1,4⟩, ⟨1,5⟩, and ⟨1,6⟩. To remedy this, ZooKeeper
has a reconfigure operation. This means that administrators do not have to do the
reconfiguration procedure by hand and risk corrupting the state. Even better, we don’t
even have to bring anything down.

Reconfiguration allows us to change not only the members of the ensemble, but also
their network parameters. Because the configuration can change, ZooKeeper needs to
move the reconfigurable parameters out of the static configuration file and into a

194 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

configuration file that will be updated automatically. The dynamicConfigFile param‐
eter links the two files together.

Can I Use Dynamic Configuration?
This feature is currently only available in the trunk branch of the
Apache repository. The target release for trunk is 3.5.0, although noth‐
ing really guarantees that the release number will be this one; it might
change depending on how trunk evolves. The latest release at the time
this book is being written is 3.4.5, and it does not include this feature.

Let’s take an example configuration file that we have been using before dynamic
configuration:

tickTime=2000
initLimit=10
syncLimit=5
dataDir=./data
dataLogDir=./txnlog
clientPort=2182
server.1=127.0.0.1:2222:2223
server.2=127.0.0.1:3333:3334
server.3=127.0.0.1:4444:4445

and change it to a configuration file that supports dynamic configuration:

tickTime=2000
initLimit=10
syncLimit=5
dataDir=./data
dataLogDir=./txnlog
dynamicConfigFile=./dyn.cfg

Notice that we have even removed the clientPort parameter from the configuration
file. The dyn.cfg file is now going to be made up of just the server entries. We are adding
a bit of information, though. Now each entry will have the form:

server.id=host:n:n[:role];[client_address:]client_port

Just as in the normal configuration file, the hostname and ports used for quorum and
leader election messages are listed for each server. The role must be either partici
pant or observer. If role is omitted, participant is the default. We also specify the
client_port (the server port to which clients will connect) and optionally the address
of a specific interface on that server. Because we removed clientPort from the static
config file, we need to add it here.

So now our dyn.cfg file looks like this:

Reconfiguration | 195

www.it-ebooks.info

http://www.it-ebooks.info/

server.1=127.0.0.1:2222:2223:participant;2181
server.2=127.0.0.1:3333:3334:participant;2182
server.3=127.0.0.1:4444:4445:participant;2183

These files have to be created before we can use reconfiguration. Once they are in place,
we can reconfigure an ensemble using the reconfig operation. This operation can op‐
erate incrementally or as a complete (bulk) update.

An incremental reconfig can take two lists: the list of servers to remove and the list of
server entries to add. The list of servers to remove is simply a comma-separated list of
server IDs. The list of server entries to add is a comma-separated list of server entries
of the form found in the dynamic configuration file. For example:

reconfig -remove 2,3 -add \
 server.4=127.0.0.1:5555:5556:participant;2184,\
 server.5=127.0.0.1:6666:6667:participant;2185

This command removes servers 2 and 3 and adds servers 4 and 5. There are some
conditions that must be satisfied in order for this operation to succeed. First, like with
all other ZooKeeper operations, a quorum in the original configuration must be active.
Second, a quorum in the new configuration must also be active.

Reconfiguring from One to Many
When we have a single ZooKeeper server, the server runs in stand‐
alone mode. This makes things a bit more complicated because a re‐
configuration that adds servers not only changes the composition of
quorums, but also switches the original server from standalone to
quorum mode. At this time we have opted for not allowing reconfi‐
guration for standalone deployments, so to use this feature you will
need to start with a configuration in quorum mode.

ZooKeeper allows only one configuration change to happen at a time. Of course, the
configuration operation happens very fast, and reconfiguration is infrequent enough
that concurrent reconfigurations should not be a problem.

The -file parameter can also be used to do a bulk update using a new membership file.
For example, reconfig -file newconf would produce the same result as the incremental
operation if newconf contained:

server.1=127.0.0.1:2222:2223:participant;2181
server.4=127.0.0.1:5555:5556:participant;2184
server.5=127.0.0.1:6666:6667:participant;2185

The -members parameter followed by a list of server entries can be used instead of -file
for a bulk update.

196 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, all the forms of reconfig can be made conditional. If the -v parameter is used,
followed by the configuration version number, the reconfig will succeed only if the
configuration is at the current version when it executes. You can get the version number
of the current configuration by reading the /zookeeper/config znode or using the
config command in zkCli.

Manual Reconfiguration
If you really want to do reconfiguration manually (perhaps you are
using an older version of ZooKeeper), the easiest and safest way to do
it is to make one change at a time and bring the ensemble all the way
up (i.e., let a leader get established) and down between each change.

Managing Client Connect Strings
We have been talking about ZooKeeper server configuration, but the clients have a bit
of related configuration as well: the connect string. The client connect string is usually
represented as a series of host:port pairs separated by a comma. The host can be
specified either as an IP address or as a hostname. Using a hostname allows for a layer
of indirection between the actual IP address of the server and the identifier used to
access the server. It allows, for example, an administrator to replace a ZooKeeper server
with a different one without changing the setup of the clients.

However, this flexibility is limited. The administrator can change the machines that
make up the cluster, but not the machines being used by the clients. For example, in
Figure 10-4, the ZooKeeper ensemble can be easily changed from a three-server en‐
semble to a five-server ensemble using reconfiguration, but the clients will still be using
three servers, not all five.

There is another way to make ZooKeeper more elastic with respect to the number of
servers, without changing client configuration. It is natural to think of a hostname re‐
solving to a single IP address, but in reality a hostname can resolve to multiple addresses.
If a hostname resolves to multiple IP addresses, the ZooKeeper client can connect to
any of these addresses. In Figure 10-4, suppose the three individual IP addresses, zk-
a, zk-b, and zk-c, resolved to 10.0.0.1, 10.0.0.2, and 10.0.0.3. Now suppose instead you
use DNS to configure a single hostname, zk, to resolve to all three IP addresses. You can
just change the number of addresses to five in DNS, and any client that subsequently
starts will be able to connect to all five servers, as shown in Figure 10-5.

Reconfiguration | 197

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-4. Reconfiguring clients from using three servers to using five

Figure 10-5. Reconfiguring clients from using three servers to using five with DNS

There are a couple of caveats to using a hostname that resolves to multiple addresses.
First, all of the servers have to use the same client port. Second, hostname resolution

198 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

currently happens only on handle creation, so clients that have already started do not
recognize the new name resolution. It applies only to newly created ZooKeeper clients.

The client connect string can also include a path component. This path indicates the
root to use when resolving pathnames. The behavior is similar to the chroot command
in Unix, and you will often hear this feature referred to as “chroot” in the ZooKeeper
community. For example, if a client specifies the connection string zk:2222/app/super
App when connecting and issues getData("/a.dat", . . .), the client will receive the
data from the znode at path /app/superApp/a.dat. (Note that there must be a znode
at the specifed path. The connect string will not create one for you.)

The motivation for using a path component in a connect string is to allow a single
ZooKeeper ensemble to host multiple applications without requiring them to append
a prefix to all their paths. Each application can use ZooKeeper as if it were the only
application using the ensemble, and administrators can carve up the namespace as they
wish. Figure 10-6 shows examples of different connect strings that can be used to root
client applications at different points in the tree.

Figure 10-6. Using the connect string to root ZooKeeper client handles

Overlapping Connection String
When managing client connection strings, take care that a client con‐
nection string never includes hosts from two different ensembles. It’s
the quickest and easiest path to split brain.

Reconfiguration | 199

www.it-ebooks.info

http://www.it-ebooks.info/

Quotas
Another configurable aspect of ZooKeeper is quotas. ZooKeeper has initial support for
quotas on the number of znodes and the amount of data stored. It allows us to specify
quotas based on a subtree and it will track the usage of the subtree. If a subtree exceeds
its quota, a warning will be logged, but the operation will still be allowed to continue.
At this point ZooKeeper detects when a quota is exceeded, but does not prevent pro‐
cesses from doing so.

Quota tracking is done in the special /zookeeper subtree. Applications should not store
their own data in this subtree; instead, it is reserved for ZooKeeper’s use. The /zookeep
er/quota znode is an example of this use. To create a quota for the application /appli
cation/superApp, create the znode /application/superApp with two children: zoo
keeper_limits and zookeeper_stats.

The limit on the number of znodes is called the count, whereas the limit on the amount
of data is called the bytes. The quotas for both zookeeper_limits and zookeep
er_stats are specified as count=n,bytes=m, where n and m are integers. In the case of
zookeeper_limits, n and m represent levels at which warnings will be triggered. (If one
of them is –1, it will not act as a trigger.) In the case of zookeeper_stats, n and m
represent the current number of znodes in the subtree and the current number of bytes
in the data of the znodes of the subtree.

Quota Tracking of Metadata
The quota tracking for the number of bytes in the subtree does not
include the metadata overhead for each znode. This metadata is on the
order of 100 bytes, so if the amount of data in each znode is small, it
is more useful to track the count of the number of znodes rather than
the number of bytes of znode data.

Let’s use zkCli to create /application/superApp and then set a quota:

[zk: localhost:2181(CONNECTED) 2] create /application ""
Created /application
[zk: localhost:2181(CONNECTED) 3] create /application/superApp super
Created /application/superApp
[zk: localhost:2181(CONNECTED) 4] setquota -b 10 /application/superApp
Comment: the parts are option -b val 10 path /application/superApp
[zk: localhost:2181(CONNECTED) 5] listquota /application/superApp
absolute path is /zookeeper/quota/application/superApp/zookeeper_limits
Output quota for /application/superApp count=-1,bytes=10
Output stat for /application/superApp count=1,bytes=5

We create /application/superApp with 5 bytes of data (the word “super”). We then set
the quota on /application/superApp to be 10 bytes. When we list the quota

200 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

on /application/superApp we see that we have 5 bytes left of our data quota and that
we don’t have a quota for the number of znodes under this subtree, because count is –1
for the quota.

If we issue get /zookeeper/quota/application/superApp/zookeeper_stats, we can access
this data directly without using the quota commands in zkCli. As a matter of fact, we
can create and delete these files to create and delete quotas ourselves. If we run the
following command:

create /application/superApp/lotsOfData ThisIsALotOfData

we should see the following entry in our log:

Quota exceeded: /application/superApp bytes=21 limit=10

Multitenancy
Quotas, some of the throttling configuration options, and ACLs all make it worth con‐
sidering the use ZooKeeper to host multiple tenants. There are some compelling reasons
to do this:

• To provide reliable service, ZooKeeper servers should run on dedicated hardware.
Sharing that hardware across multiple applications makes it easier to justify the
capital investment.

• We have found that, for the most part, ZooKeeper traffic is extremely bursty: there
are bursts of configuration or state changes that cause a lot of load followed by long
periods of inactivity. If the activity bursts between applications are not correlated,
making them share a server will better utilize hardware resources. Also remember
to account for spikes generated when disconnect events happen. Some poorly writ‐
ten apps may generate more load than needed when processing a Disconnected
event.

• By pooling hardware, we can achieve greater fault tolerance: if two applications that
previously had their own ensembles of three servers are moved to a single cluster
of five servers, they use fewer servers in total but can survive two server failures
rather than just one.

When hosting multiple tenants, administrators will usually divide up the data tree into
subtrees, each dedicated to a certain application. Developers can design their applica‐
tions to take into account that their znodes need to have a prefix, but there is an easier
way to isolate applications: using the path component in the connect string, described
in “Managing Client Connect Strings” on page 197. Each application developer can write
her application as if she has a dedicated ZooKeeper service. Then, if the administrator
decides that the application should be deployed under /application/newapp, the ap‐
plication can use host:port/application/newapp rather than just host:port, and it

Multitenancy | 201

www.it-ebooks.info

http://www.it-ebooks.info/

will appear to the application that it is using a dedicated service. In the meantime, the
administrator can set up the quota for /application/newapp to also track the space
usage of the application.

File System Layout and Formats
We have talked about snapshots and transaction logs and storage devices. This section
describes how this is all laid out on the file system. A good understanding of the concepts
discussed in “Local Storage” on page 170 will come in handy in this section; be prepared
to refer back to it.

As we have already discussed, data is stored in two ways: transaction logs and snap‐
shots. Both of these end up as normal files in the local file system. Transaction logs are
written during the critical path of transaction processing, so we highly recommend
storing them on a dedicated device. (We realize we have said this multiple times, but it
really is important for good, consistent throughput and latency.) Not using a dedicated
device for the transaction log does not cause any correctness issues, but it does affect
performance. In a virtualized environment, for example, dedicated devices might not
be available. Snapshots need not be stored on a dedicated device because they are taken
lazily in a background thread.

Snapshots are written to the path specified in the DataDir parameter, and transaction
logs are written to the path specified in the DataLogDir parameter. Let’s take a look at
the files in the transaction log directory first. If you list the contents of that directory,
you will see a single subdirectory called version-2. We have had only one major change
to the format of logs and snapshots, and when we made that change we realized that it
would be useful to separate data by file versions to more easily handle data migration
between versions.

Transaction Logs
Let’s look at a directory where we have been running some small tests, so it has only two
transaction logs:

-rw-r--r-- 1 breed 67108880 Jun 5 22:12 log.100000001
-rw-r--r-- 1 breed 67108880 Jul 15 21:37 log.200000001

We can make a couple of observations about these files. First, they are quite large (over
6 MB each), considering the tests were small. Second, they have a large number as the
filename suffix.

ZooKeeper preallocates files in rather large chunks to avoid the metadata management
overhead of growing the file with each write. If you do a hex dump of one of these files,
you will see that it is full of bytes of the null character (\0), except for a bit of binary data

202 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

at the beginning. As the servers run longer, the null characters will be replaced with log
data.

The log files contain transactions tagged with zxids, but to ease recovery and allow for
quick lookup, each log file’s suffix is the first zxid of the log file in hexadecimal. One
nice thing about representing the zxid in hex is that you can easily distinguish the epoch
part of the zxid from the counter. So, the first file in the preceding example is from epoch
1 and the second is from epoch 2.

Of course, it would be nice to be able to see what is in the files. This can be super useful
for problem determination. There have been times when developers have sworn up and
down that ZooKeeper is losing track of their znodes, only to find out by looking at the
transaction logs that a client has actually deleted some.

We can look at the second log file with the following command:

java -cp $ZK_LIBS org.apache.zookeeper.server.LogFormatter version-2 /
log.200000001

This command outputs the following:

7/15/13... session 0x13...00 cxid 0x0 zxid 0x200000001 createSession 30000
7/15/13... session 0x13...00 cxid 0x2 zxid 0x200000002 create
'/test,#22746573746 ...
7/15/13... session 0x13...00 cxid 0x3 zxid 0x200000003 create
'/test/c1,#6368696c ...
7/15/13... session 0x13...00 cxid 0x4 zxid 0x200000004 create
'/test/c2,#6368696c ...
7/15/13... session 0x13...00 cxid 0x5 zxid 0x200000005 create
'/test/c3,#6368696c ...
7/15/13... session 0x13...00 cxid 0x0 zxid 0x200000006 closeSession null

Each transaction in the log file is output as its own line in human-readable form. Because
only change operations result in a transaction, you will not see read transactions in the
transaction log.

Snapshots
The naming scheme for snapshot files is similar to the transaction log scheme. Here is
the list of snapshots on the server used earlier:

-rw-r--r-- 1 br33d 296 Jun 5 07:49 snapshot.0
-rw-r--r-- 1 br33d 415 Jul 15 21:33 snapshot.100000009

Snapshot files are not preallocated, so the size more accurately reflects the amount of
data they contain. The suffix used reflects the current zxid when the snapshot started.
As we discussed earlier, the snapshot file is actually a fuzzy snapshot; it is not a valid
snapshot on its own until the transaction log is replayed over it. Specifically, to restore
a system, you must start replaying the transaction log starting at the zxid of the snapshot
suffix or earlier.

File System Layout and Formats | 203

www.it-ebooks.info

http://www.it-ebooks.info/

The files themselves also store the fuzzy snapshot data in binary form. Consequently,
there is another tool to examine the snapshot files:

java -cp ZK_LIBS org.apache.zookeeper.server.SnapshotFormatter version-2 /
snapshot.100000009

This command outputs the following:

/
 cZxid = 0x00000000000000
 ctime = Wed Dec 31 16:00:00 PST 1969
 mZxid = 0x00000000000000
 mtime = Wed Dec 31 16:00:00 PST 1969
 pZxid = 0x00000100000002
 cversion = 1
 dataVersion = 0
 aclVersion = 0
 ephemeralOwner = 0x00000000000000
 dataLength = 0

/sasd
 cZxid = 0x00000100000002
 ctime = Wed Jun 05 07:50:56 PDT 2013
 mZxid = 0x00000100000002
 mtime = Wed Jun 05 07:50:56 PDT 2013
 pZxid = 0x00000100000002
 cversion = 0
 dataVersion = 0
 aclVersion = 0
 ephemeralOwner = 0x00000000000000
 dataLength = 3

....

Only the metadata for each znode is dumped. This allows an administrator to figure out
things like when a znode was changed and which znodes are taking up a lot of memory.
Unfortunately, the data and ACLs don’t appear in this output. Also, remember when
doing problem determination that the information from the snapshot must be merged
with the information from the log to figure out what was going on.

Epoch Files
Two more small files make up the persistent state of ZooKeeper. They are the two epoch
files, named acceptedEpoch and currentEpoch. We have talked about the notion of an
epoch before, and these two files reflect the epoch numbers that the given server process
has seen and participated in. Although the files don’t contain any application data, they
are important for data consistency, so if you are doing a backup of the raw data files of
a ZooKeeper server, don’t forget to include these two files.

204 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

Using Stored ZooKeeper Data
One of the nice things about ZooKeeper data is that the standalone servers and the
ensemble of servers store data in the same way. We’ve just mentioned that to get an
accurate view of the data you need to merge the logs and the snapshot. You can do this
by copying log files and snapshot files to another machine (like your laptop, for exam‐
ple), putting them in the empty data directory of a standalone server, and starting the
server. The server will now reflect the state of the server that the files were copied from.
This technique allows you to capture the state of a server in production for later review.

This also means that you can easily back up a ZooKeeper server by simply copying its
data files. There are a couple of things to keep in mind if you choose to do this. First,
ZooKeeper is a replicated service, so there is redundancy built into the system. If you
do take a backup, you need to back up only the data of one of the servers.

It is important to keep in mind that when a ZooKeeper server acknowledges a transac‐
tion, it promises to remember the state from that time forward. So if you restore a server’s
state using an older backup, you have caused the server to violate its promise. This might
not be a big deal if you have just suffered data loss on all servers, but if you have a working
ensemble and you move a server to an older state, you risk causing other servers to also
start to forget things.

If you are recovering from data loss on all or a majority of your servers, the best thing
to do is to grab your latest captured state (from a backup from the most up-to-date
surviving server) and copy that state to all the other servers before starting any of them.

Four-Letter Words
Now that we have our server configured and up and running, we need to monitor it.
That is where four-letter words come in. We have already seen some examples of four-
letter words when we used telnet to see the system status in “Running the Watcher
Example” on page 49. Four-letter words provide a simple way to do various checks on
the system. The main goal with four-letter words is to provide a very simple protocol
that can be used with simple tools, such as telnet and nc, to check system health and
diagnose problems. To keep things simple, the output of a four-letter word will be human
readable. This makes the words easy to experiment with and use.

Four-Letter Words | 205

www.it-ebooks.info

http://www.it-ebooks.info/

It is also easy to add new words to the server, so the list has been growing. In this section
we will point out some of the commonly used words. Consult the ZooKeeper docu‐
mentation for the most recent and complete list of words:
ruok

Provides (limited) information about the status of the server. If the server is run‐
ning, it will respond with imok. It turns out that “OK” is a relative concept, though.
For example, the server might be running but unable to communicate with the other
servers in the ensemble, yet still report that it is “OK.” For a more detailed and
reliable health check, use the stat word.

stat

Provides information about the status of the server and the connections that are
currently active. The status includes some basic statistics and whether the server is
currently active, if it is a leader or follower, and the last zxid the server has seen.
Some of the statistics are cumulative and can be reset using the srst word.

srvr

Provides the same information as stat, except the connection information, which
it omits.

dump

Provides session information, listing the currently active sessions and when they
will expire. This word can be used only on a server that is acting as the leader.

conf

Lists the basic server configuration parameters that the server was started with.

envi

Lists various Java environment parameters.

mntr

Offers more detailed statistics than stat about the server. Each line of output has
the format key<tab>value. (The leader will list some additional parameters that
apply only to leaders.)

wchs

Lists a brief summary of the watches tracked by the server.

wchc

Lists detailed information on the watches tracked by the server, grouped by session.

206 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://bit.ly/1a7z325
http://bit.ly/1a7z325
http://www.it-ebooks.info/

wchp

Lists detailed information on the watches tracked by the server, grouped by the
znode path being watched.

cons, crst
cons lists detailed statistics for each connection on a server and crst resets all the
connection counters to zero.(((“cons”))

Monitoring with JMX
Four-letter words are great for monitoring, but they do not provide a way to control or
make changes to the system. ZooKeeper also uses a standard Java management protocol
called JMX (Java Management Extensions) to provide more powerful monitoring and
management capabilities. There are many books about how to set up and use JMX and
many tools for managing servers with JMX; in this section we will use a simple man‐
agement console called jconsole to explore the ZooKeeper management functionality
that is available via JMX.

The jconsole utility is distributed with Java. In practice, a JMX tool such as jconsole is
used to monitor remote ZooKeeper servers, but for this part of the exercise we will run
it on the same machine as our ZooKeeper servers.

First, let’s start up the second ZooKeeper server (the one with the ID of 2). Then we’ll
start jconsole by simply running the jconsole command from the command line. You
should see a window similar to Figure 10-7 when jconsole starts.

Notice the process that has “zookeeper” in the name. This is the local process that
jconsole has discovered that it can connect to.

Now let’s connect to the ZooKeeper process by double-clicking that process in the list.
We will be asked about connecting insecurely because we do not have SSL set up. Click‐
ing the insecure connection button should bring up the screen shown in Figure 10-8.

Monitoring with JMX | 207

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-7. jconsole startup screen

208 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-8. The first management window for a process

As we can see from this screen, we can get various interesting statistics about the Zoo‐
Keeper server process with this tool. JMX allows customized information to be exposed
to remote managers through the use of MBeans (Managed Beans). Although the name
sounds goofy, it is a very flexible way to expose information and operations. jconsole
lists all the MBeans exposed by the process in the rightmost information tab, as shown
in Figure 10-9.

Monitoring with JMX | 209

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-9. jconsole MBeans

As we can see from the list of MBeans, some of the components used by ZooKeeper are
also exposed via MBeans. We are interested in the ZooKeeperService, so we will double-
click on that list item. We will see a hierarchal list of replicas and information about
those replicas. If we open some of the subentries in the list, we will see something like
Figure 10-10.

210 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-10. jconsole information for server 2

As we explore the information for replica.2 we will notice that it also includes some
information about the other replicas, but it’s really just the contact information. Because
server 2 doesn’t know much about the other replicas, there is not much more it can
reveal about them. Server 2 does know a lot about itself, though, so it seems like there
should be more information that it can expose.

If we start up server 1 so that server 2 can form a quorum with server 1, we will see that
we get more information about server 2. Start up server 1 and then check server 2 in
jconsole again. Figure 10-11 shows some of the additional information that is exposed
by JMX. We can now see that server 2 is acting as a follower. We can also see information
about the data tree.

Monitoring with JMX | 211

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-11 shows the JMX information for server 1. As we see, server 1 is acting as a
leader. One additional operation, FollowerInfo, is available on the leader to list the
followers. When we click this button, we see a rather raw list of information about the
other ZooKeeper servers connected to server 1.

Figure 10-11. jconsole information for server 1

Up to now, the information we’ve seen from JMX looks prettier than the information
we get from four-letter words, but we really haven’t seen any new functionality. Let’s
look at something we can do with JMX that we cannot do with four-letter words. Start
a zkCli shell. Connect to server 1, then run the following command:

create -e /me "foo"

This will create an ephemeral znode on the server. Figure 10-11 shows that a new in‐
formational entry for Connections has appeared in the JMX information for server 1.
The attributes of the connection list various pieces of information that are useful for
debugging operational issues. This view also exposes two interesting operations: termi
nateSession and terminateConnection.

The terminateConnection operation will close the ZooKeeper client’s connection to
the server. The session will still be active, so the client will be able to reconnect to another

212 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

server; the client will see a disconnection event but should be able to easily recover
from it.

In contrast, the terminateConnection operation declares the session dead. The client’s
connection with the server will close and the session will be terminated as if it has
expired. The client will not be able to connect to another server using the session. Care
should be taken when using terminateConnection because that operation can cause
the session to expire long before the session timeout, so other processes may find out
that the session is dead before the process that owns that session finds out.

Connecting Remotely
The JMX agent that runs inside of the JVM of a ZooKeeper server must be configured
properly to support remote connections. There are a variety of options to configure
remote connections for JMX. In this section we show one way of getting JMX set up to
see what kind of functionality it provides. If you want to use JMX in production, you
will probably want to use another JMX-specific reference to get some of the more ad‐
vanced security features set up properly.

All of the JMX configuration is done using system properties. The zkServer.sh script
that we use to start a ZooKeeper server has support for setting these properties using
the SERVER_JVMFLAGS environment variable.

For example, we can access server 3 remotely using port 55555 if we start the server as
follows:

SERVER_JVMFLAGS="-Dcom.sun.management.jmxremote.password.file=passwd \
 -Dcom.sun.management.jmxremote.port=55555 \
 -Dcom.sun.management.jmxremote.ssl=false \
 -Dcom.sun.management.jmxremote.access.file=access"
_path_to_zookeeper_/bin/zkServer.sh start _path_to_server3.cfg_

The properties refer to a password and access file. These have a very simple format.
Create the passwd file with:

user password
admin <password>

Note that the password is stored in clear text. For this reason, the password file must be
readable and writable only by the owner of the file; if it is not, Java will not start up.
Also, we have turned off SSL. That means the password will go over the network in clear
text. If you need stronger security, there are much stronger options available to JMX,
but they are outside the scope of this book.

For the access file, we are going to give readwrite privileges to admin by creating the
file with:

admin readwrite

Monitoring with JMX | 213

www.it-ebooks.info

http://www.it-ebooks.info/

Now, if we start jconsole on another computer, we can use host:5555 for the remote
process location (where host is the hostname or address of the machine running Zoo‐
Keeper), and the user admin with the password <password> to connect. If you happen
to misconfigure something, jconsole will fail with messages that give little clue about
what is going on. Starting jconsole with the -debug option will provide more information
about failures.

Tools
Many tools and utilities come with ZooKeeper or are distributed separately. We have
already mentioned the log formatting utilities and the JMX tool that comes with Java.
In the contrib directory of the ZooKeeper distribution, you can find utilities to help
integrate ZooKeeper into other monitoring systems. A few of the most popular offerings
there are:

• Bindings for Perl and Python, implemented using the C binding.
• Utilities for visualizing the ZooKeeper logs.
• A web UI for browsing the cluster nodes and modifying ZooKeeper data.
• zktreeutil, which comes with ZooKeeper, and guano, which is available on GitHub.

These utilities conveniently import and export data to and from ZooKeeper.
• zktop, also available on GitHub, which monitors ZooKeeper load and presents it

in a Unix top-like interface.
• ZooKeeper Smoketest, available on GitHub. This is a simple smoketest client for a

ZooKeeper ensemble; it’s a great tool for developers getting familiar with Zoo‐
Keeper.

Of course, this isn’t an exhaustive list, and many of the really great tools for running
ZooKeeper are developed and distributed outside of the ZooKeeper distribution. If you
are a ZooKeeper administrator, it would be worth your while to try out some of these
tools in your environment.

Takeaway Messages
Although ZooKeeper is simple to get going, there are many ways to tweak the service
for your environment. ZooKeeper’s reliability and performance also depend on correct
configuration, so it is important to understand how ZooKeeper works and what the
different parameters do. ZooKeeper can adjust to various network topologies if the
timing and quorum configurations are set properly. Although changing the members
of a ZooKeeper ensemble by hand is risky, it is a snap with the ZooKeeper reconfig
operation. There are many tools available to make your job easier, so take a bit of time
to explore what is out there.

214 | Chapter 10: Running ZooKeeper

www.it-ebooks.info

http://www.it-ebooks.info/

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
access control lists (ACLs)

adding new authentication schemes, 113
authentication scheme example, 110
built-in authentication schemes, 110
bypass of, 186, 187
entry form of, 109
management of, 109
open ACLs, 52
SASL and Kerberos, 113

AdminClient, 65
Apache HBase, 5, 9, 106
Apache Kafka, 5
Apache Software Foundation, 7, 139
Apache Solr, 5
application logic, benefits of ZooKeeper for, 3
asynchronous systems

benefits of, 67
callbacks in, 141
definition of, 8
getting mastership in, 56
synchronous calls and, 118

at-most-once semantics, 11
atomic execution, 87
authentication information

adding, 109
adding new authentication schemes, 113
built-in schemes, 110
configuration options, 186

example of, 110
SASL and Kerberos, 113

automatic disconnect handling, 103
automatic failure recovery, 104
autopurge.purgeInterval, 181
autopurge.snapRetainCount, 180

B
bulk storage

options available, 7
role of network communication in, 8

byte arrays, data storage as, 19
Byzantine faults, 13

C
C API

assigning tasks in, 132
bootstrapping the master in, 124–129
development environment set up, 121
references and instructions for, 121
single-threaded vs. multithreaded clients

and, 136
starting a session, 122
taking leadership in, 130

cache management, 22, 90
call chaining, 140
callbacks

blocking in C API, 138

215

www.it-ebooks.info

http://www.it-ebooks.info/

for asynchronous calls, 141
multiple threads and, 64, 117
processing of, 57

CAP (Consistency, Availability, and Partition-
tolerance) result, 14

child watches, 71, 118, 175
children cache, 150, 187
CLASSPATH environment variable, 45
client polling, 21, 69
client role, 40
clientPort configuration, 179
clientPortAddress, 183
clients

connection order of, 34
connection string management, 197
Curator client, 139
main classes of, 175
ordering guarantees and, 91, 116
reconnection of, 31
relationship to servers, 23
role of sessions, 25
server choice, 31

clock drift, consequences of, 8
cluster configuration, 184
cnxTimeout, 185
communication failures, dealing with, 11
completion functions, 127
conf, 206
configuration

agreement on configuration bit, 13
client connection strings, 197
dynamic configuration, 195
file system layout and formats, 202
importance of consistency in, 177
monitoring with four-letter words, 205
monitoring with JMX, 207
multitenancy and, 201
quota configuration, 200
reconfiguration, 193–199
remote connections, 213
server configuration, 178–190
tools and utilities for, 214
ZooKeeper ensemble configuration, 190

CONNECTIONLOSS event, 79, 86, 100, 116
ConnectionLossException, 53, 64, 99
connections, management of, 50, 139, 182, 213
connectString, 46
contention

causes of, 181

definition of, 4
coordination tasks

benefits of separate component for, 7
definition of, 4
importance of, 3
prior to ZooKeeper, 6

crash detection, importance of, 12
Curator API

benefits of, 139
call chaining in, 140
client creation, 139
implementation of master in, 144–150
listeners in, 141
sequential znodes in, 144
state changes in, 143

D
data buckets, 174
data nodes, 17

(see also znodes)
data storage

configuration of, 179
file system layout and formats, 202
in byte arrays, 19
in znodes, 29
limitations on, 118
local storage, 170
quotas on, 200
shared storage model, 8

data trees, 17, 161, 172, 175
data watches, 71, 175
dataDir configuration, 179
dataLogDir configuration, 179
Disconnected event, 99
disk use, 170
distributed systems

common problems, 8, 12
communication options in, 8
definition of, 7
diagram of, 97
master-worker example, 9
partial failures in, 13

dump, 206
dynamic configuration, 195

E
election algorithm, 185

216 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

ensembles, definition of, 24
(see also ZooKeeper ensembles)

environment variables, 45
ephemeral znodes, 12, 19
epochs, 163, 204
errors

permission errors, 109
znode creation/deletion, 144

event handlers, 143
events

definition of, 70
in WatchedEvent data structure, 71
one-time triggers and, 70
server disconnection and, 85

exactly-once semantics, 11
exceptions

ConnectionLossException, 53
InterruptedException, 53
KeeperException, 53

exists operation, 102
expiry queues, 174

F
failures

automatic disconnect handling, 103
automatic recovery from, 104
categories of, 97
classes of, 99
communication failures, 11
diagram of, 98
leader election, 104–107
master failures, 10
partial failures, 13
recoverable failures, 99–103
unrecoverable failures, 103
worker failures, 10

faults
Byzantine faults, 13
common faults, 8, 9

fencing, 106
FIFO (First In First Out) order, 26
file system layout/formats, 202
fluent programming style, 139
flushing, 171
forceSync, 187
four-letter words, 205
fsync.warningthresholdms, 181
fuzzy snapshots, 172, 179, 202

G
globalOutstandingLimit, 182
Google’s Bigtable, 9
group commits, 171
group membership

establishment of, 191
importance of, 12, 12

guano, 214

H
Hadoop, 175
handles, 45
hidden channels, 91, 115

I
idempotent transactions, 157
initLimit, 184
InterruptedException, 53
ip authentication scheme, 112

J
JMX (Java Management Extensions), 207–214
Jute, 175
jute.maxbuffer, 187

K
KeeperException, 53
Kerberos authentication protocol, 113

L
leader election, 104–107, 130, 157–161, 163, 185
leader latch primitive, 144
leader selector primitive, 146
leaderServes, 184
libraries, building for C API, 121
listeners, 141
liveness vs. safety, 93
load balancing, 34
locks

impact of communication failures on, 12
implementation of, 35

Log4J, 188

Index | 217

www.it-ebooks.info

http://www.it-ebooks.info/

M
master election

algorithm for, 51
importance of, 12
recipe for, 144

master failures
dealing with, 10
pending tasks and, 114

master role, 36, 51–60
master-worker architectures

basic example of, 9
basics of, 4
configuration metadata in, 4
implementation example of, 35–42
key problems in, 9
required tasks, 12
state change example of, 73–87

mastership changes, 73, 114
maxClientCnxns, 182
maxSessionTimeout, 183
MBeans (Managed Beans), 209
message delays, consequences of, 8
metadata directories, setting up, 59
metadata management, importance of, 12
minSessionTimeout, 183
mntr, 206
monitoring

with four-letter words, 205
with JMX, 207–214

multiop feature, 87
multitenancy, 201
multithreaded programs

C API and, 136
ordering guarantees and, 64, 117
synchronization primitives in, 4

mutual exclusion, need for, 4

N
networks

configuration of, 181
importance of communication in, 8, 185
partitions and session states in, 30, 188

nodes
impact of locks on, 12
organization of, 17

(see also znodes)
notifications, 21, 70, 92, 93, 158

O
observers, 166, 190
one-time triggers, 70
order guarantees, 26, 64, 91, 116–118
overload conditions, 182

P
padding, 171
partial failures, 13
passwords

duplication of, 112
in JMX, 213
origin of, 112
password digest, 111, 186

Perl, 214
permission errors, 109
persistent znodes, 19
ping messages, 173
polling, 21, 69
ports, 179
preAllocSize, 180
primitives

Curator approach to, 139
definition of, 12
leader latch primitive, 144
leader selector primitive, 146
locks, 35
synchronization primitives, 4, 12
ZooKeeper approach to, 17

processor speed, consequences of decreased, 8
proposals, 162
Python, 214

Q
quorums

adequate size for, 24
configuration of, 190
example of, 25
reconfiguration and, 196
server choice and, 31
usefulness of, 24, 157

quotas, 200

R
read requests, 156
readonlymode.enabled, 187

218 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

recipes
components of, 17
included in Curator, 139, 144

reconfiguration, 193–199
recoverable failures, 99–103
remote connections, 213
request processors, 167
requests, 156, 182
resources, dedication of, 190
ruok, 206

S
SASL (Simple Authentication and Security Lay‐

er), 113
security issues

access control constant, 52
authentication information, 109
IP-based authentication schemes, 113
JMX security features, 213
super passwords, 186
unsafe configuration options, 186

sequential znodes, 20
serialization, 175
servers

basic configuration, 179
choices of, 31
configuration options, 178
embedding ZooKeeper, 119
implementing multiple, 31–35
leader servers, 168
leader, follower, and observer, 155, 169, 184,

190
modes of, 24
monitoring with four-letter words, 205
monitoring with JMX, 207–214
ordering guarantees and, 91
quorum mode, 24, 157, 196
relationship to clients, 23
request processors in, 167
server failures, 99
server’s identifier (sid), 158
session tracking in, 173
standalone servers, 167, 177, 196
storage configuration, 179
watch managers and, 174
watchers during disconnection, 85

sessions
creation of, 45–51
dealing with state change in, 69–95

declaring expiration of, 30, 174
first ZooKeeper session, 27
importance of, 25
lifetime of, 30
migration of, 46
order guarantees in, 26, 64, 91
possible states of, 30
session recovery, 114
starting in C API, 122
timeout parameter, 31, 46, 183
tracking of, 173
transaction identifiers for, 31, 161
transitions in, 30

sessionTimeout, 46
shared storage model, 8
skipACL, 187
SLF4J (The Simple Logging Facade for Java),

188
smoketest client, 214
snapCount, 180
snapshots, 172, 203

(see also fuzzy snapshots)
split-brain scenarios, avoiding, 10, 157, 177
srvr, 206
stat, 206
state change

broadcasting state updates, 161–166
in Curator API, 143
master-worker example, 73–87
multiop feature, 87
one-time triggers, 70
order guarantees and, 91
polling for, 69
sample asynchronous code pattern, 72
session death, 101
setting watches, 71
watch scalability and, 93
watches vs. cache managment, 90

state deltas, 173
super authentication scheme, 110
super users, 186
sync() calls, 115
SyncConnected event, 99
synchronization primitives

impact of communication failures on, 12
vs. ZooKeeper, 4

syncLimit, 184

Index | 219

www.it-ebooks.info

http://www.it-ebooks.info/

T
tasks

assignment in C API, 132
assignment of, 79
avoiding multiple execution of, 11
determining status of, 85
queuing of, 64

TCP ports, 179
ticks, 173, 179, 183
timeouts, 30, 46, 183
touches, 173
traceFile, 181
transaction identifiers, 31, 156, 161
transaction logs, 165, 168, 170, 188, 202
triggers, 70

U
unrecoverable failures, 103
unsafe configuration options, 186

(see also security issues)
usernames, origin of, 112

V
versions/version numbers

preventing inconsistencies with, 23, 173
znode re-creation and, 114

W
WatchedEvent, 71
Watcher interface

implementation of, 46, 71
running the example, 49

watches
building in C API, 123
definition of, 70
notification triggers from, 21
reestablishment of, 102
removal of in C API, 124
scalability of, 93
server disconnection and, 85
setting, 71
types of, 71
vs. explicit cache management, 90
vs. polling, 70
watch managers, 174

wchc, 206
wchp, 207

wchs, 206
Windows, building ZooKeeper on, 122
workers

dealing with failures of, 10
obtaining a list of, 77
registration of, 60, 82
role of, 39

world authentication scheme, 110

Y
Yahoo! Fetching Service, 5

Z
ZAB (ZooKeeper Atomic Broadcast) protocol,

161–166
zkCleanup.sh, 181
zkCli tool, 27, 35, 65
zkServer tool, 27
zktop, 214
zktreeutil, 214
znodes

concurrent updates to, 23
creation in C API, 124
data limits in, 118, 200
data storage in, 29
deletion of, 144
indicating changes with notifications, 22
master, 36
multiple reads to, 20
organization of, 17
per-node access control lists, 52, 109
persistent and ephemeral, 19
re-creation of, 114
sequential, 20, 86, 144
state change notification and, 72
workers, 39
workers, tasks, and assignments, 38

ZOOAPI, 122
ZooDefs.Ids.OPEN_ACL_UNSAFE, 52
ZooKeeper

architecture of, 23–35
basics of, 17–23
benefits of, 3, 6, 9
cache management in, 22, 90
configuration of, 177–214
data separation in, 3
development community for, 7
distributed systems and, ix, 7

220 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

downloading and installing, 26
embedding of, 119
examples of use, 4, 9, 35–42
first session, 27
limitations of, 7, 14
mission of, 4, 15, 177
non-Java implementation of, 121–138
origin of name, 6
prerequisites to learning, ix
starting, 26

ZooKeeper API
AdminClient in, 65
benefits of, 5
extensions with Curator, 139–151
getting mastership, 51–60
overview of, 19
queuing tasks in, 64
session creation, 45–51
setting the classpath, 45
setting up metadata directories, 59

worker registration in, 60
ZooKeeper ensembles

client classes in, 175
configuration of, 190
definition of, 24
leader and follower servers, 155, 184
leader elections and, 157–161
local storage, 170
manual configuration of, 193
observers, 166
requests, transactions and identifiers, 156
serialization in, 175
server organization, 167–170
session expiration and, 30, 114
session tracking in, 173
state change in, 69, 91
watch managers in, 174
ZAB (ZooKeeper Atomic Broadcast) proto‐

col, 161–166
ZooKeeper transaction id (zxid), 157, 158

Index | 221

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors
Flavio Junqueira is a member of the research staff of Microsoft Research in Cambridge,
UK. He holds a PhD degree in computer science from the University of California, San
Diego. He is interested in various aspects of distributed systems, including distributed
algorithms, concurrency, and scalability. He is an active contributor of Apache projects,
such as Apache ZooKeeper (PMC chair and committer) and Apache BookKeeper
(committer). When he is idle, he sleeps.

Benjamin Reed is a Software Engineer at Facebook working on all things small. His
previous positions include Principal Research Scientist at Yahoo! Research (working on
all things big) and Research Staff Member (working on the big and the small) at IBM
Almaden Research. The University of California, Santa Cruz granted him a PhD in
computer science. He has worked in the areas of distributed computing, big data pro‐
cessing, distributed storage, systems management, and embedded frameworks. He par‐
ticipated in various open source projects such as Hadoop and Linux. He helped start
the Pig, ZooKeeper, and BookKeeper projects hosted by the Apache Software
Foundation.

Colophon
The animal on the cover of ZooKeeper is a European wildcat (Felis silvestris silvestris),
a subspecies of the wildcat that inhabits the forests and grasslands of Europe, as well as
Turkey and the Caucasus Mountains.

Similar in size to a large domestic cat, the European wildcat has a broader head, longish
fur, and a shorter, blunted tail—white patches are often found on the throat, chest, and
abdomen. The staple diet for the majority of European wildcats is made up of small
rodents such as wood mice, pine voles, water voles, and shrews. Interestingly, at odds
with domesticated cats’ love of fish, wildcats rarely prey on fish in the wild.

The European wildcat was once found throughout Europe and is considered by some
to be the oldest form of the species—limited fossil records indicate an ancestral link to
wildcats dating back to the Early Pleistocene period. During the past 300 years, the range
of the European wildcat, through pressures brought about by hunting and the spread
of human population, has been significantly reduced.

Hybridization is also a major issue. Although many of the wildcat subspecies live in
remote regions, others are in relative close proximity to human habitation and therefore
near domestic and feral cat populations, within which they often mate. Over an extended
period of time, it is possible that certain subspecies will simply “breed” themselves out
of existence.

The cover image is from Meyers Kleines Lexicon. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Audience
	Contents of This Book
	Conventions Used in this Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. ZooKeeper Concepts and Basics
	Chapter 1. Introduction
	The ZooKeeper Mission
	How the World Survived without ZooKeeper
	What ZooKeeper Doesn’t Do
	The Apache Project
	Building Distributed Systems with ZooKeeper

	Example: Master-Worker Application
	Master Failures
	Worker Failures
	Communication Failures
	Summary of Tasks

	Why Is Distributed Coordination Hard?
	ZooKeeper Is a Success, with Caveats

	Chapter 2. Getting to Grips with ZooKeeper
	ZooKeeper Basics
	API Overview
	Different Modes for Znodes
	Watches and Notifications
	Versions

	ZooKeeper Architecture
	ZooKeeper Quorums
	Sessions

	Getting Started with ZooKeeper
	First ZooKeeper Session
	States and the Lifetime of a Session
	ZooKeeper with Quorums
	Implementing a Primitive: Locks with ZooKeeper

	Implementation of a Master-Worker Example
	The Master Role
	Workers, Tasks, and Assignments
	The Worker Role
	The Client Role

	Takeaway Messages

	Part II. Programming with ZooKeeper
	Chapter 3. Getting Started with the ZooKeeper API
	Setting the ZooKeeper CLASSPATH
	Creating a ZooKeeper Session
	Implementing a Watcher
	Running the Watcher Example

	Getting Mastership
	Getting Mastership Asynchronously
	Setting Up Metadata

	Registering Workers
	Queuing Tasks
	The Admin Client
	Takeaway Messages

	Chapter 4. Dealing with State Change
	One-Time Triggers
	Wait, Can I Miss Events with One-Time Triggers?

	Getting More Concrete: How to Set Watches
	A Common Pattern
	The Master-Worker Example
	Mastership Changes
	Master Waits for Changes to the List of Workers
	Master Waits for New Tasks to Assign
	Worker Waits for New Task Assignments
	Client Waits for Task Execution Result

	An Alternative Way: Multiop
	Watches as a Replacement for Explicit Cache Management
	Ordering Guarantees
	Order of Writes
	Order of Reads
	Order of Notifications

	The Herd Effect and the Scalability of Watches
	Takeaway Messages

	Chapter 5. Dealing with Failure
	Recoverable Failures
	The Exists Watch and the Disconnected Event

	Unrecoverable Failures
	Leader Election and External Resources
	Takeaway Messages

	Chapter 6. ZooKeeper Caveat Emptor
	Using ACLs
	Built-in Authentication Schemes
	SASL and Kerberos
	Adding New Schemes

	Session Recovery
	Version Is Reset When Znode Is Re-Created
	The sync Call
	Ordering Guarantees
	Order in the Presence of Connection Loss
	Order with the Synchronous API and Multiple Threads
	Order When Mixing Synchronous and Asynchronous Calls

	Data and Child Limits
	Embedding the ZooKeeper Server
	Takeaway Messages

	Chapter 7. The C Client
	Setting Up the Development Environment
	Starting a Session
	Bootstrapping the Master
	Taking Leadership
	Assigning Tasks
	Single-Threaded versus Multithreaded Clients
	Takeaway Messages

	Chapter 8. Curator: A High-Level API for ZooKeeper
	The Curator Client
	Fluent API
	Listeners
	State Changes in Curator
	A Couple of Edge Cases
	Recipes
	Leader Latch
	Leader Selector
	Children Cache

	Takeaway Messages

	Part III. Administering ZooKeeper
	Chapter 9. ZooKeeper Internals
	Requests, Transactions, and Identifiers
	Leader Elections
	Zab: Broadcasting State Updates
	Observers
	The Skeleton of a Server
	Standalone Servers
	Leader Servers
	Follower and Observer Servers

	Local Storage
	Logs and Disk Use
	Snapshots

	Servers and Sessions
	Servers and Watches
	Clients
	Serialization
	Takeaway Messages

	Chapter 10. Running ZooKeeper
	Configuring a ZooKeeper Server
	Basic Configuration
	Storage Configuration
	Network Configuration
	Cluster Configuration
	Authentication and Authorization Options
	Unsafe Options
	Logging
	Dedicating Resources

	Configuring a ZooKeeper Ensemble
	The Majority Rules
	Configurable Quorums
	Observers

	Reconfiguration
	Managing Client Connect Strings

	Quotas
	Multitenancy
	File System Layout and Formats
	Transaction Logs
	Snapshots
	Epoch Files
	Using Stored ZooKeeper Data

	Four-Letter Words
	Monitoring with JMX
	Connecting Remotely

	Tools
	Takeaway Messages

	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

